Меню

11 схем питания различной сложности

Блок питания для ламповых, усилителя мощности и винил корректора

Блок питания для ламповых, усилителя мощности и винил корректора

Еще при «эскизном проектировании» — на уровне идеи, было принято решение вынести источники питания в отдельный корпус. Вообще говоря, изрядный смысл в таком «вольте» есть, особенно для подверженного всяким наводкам и фону, винил-корректору — удаление на некоторое расстояние источника мощных электромагнитных полей — трансформаторов. С другой стороны, источник питания в однотактном каскаде, находится в цепи сигнала и желательно минимизировать все соединения, словом — компромисс, как и всегда, как и везде. К преимуществам решения, можно также отнести, существенно более простую конструкцию усилителей, их компоновку. Меньший вес каждого блока — усилитель, не смотря на скромную мощность, получился очень тяжелым, с блоком питания, перемещать его в одиночку было бы затруднительно.

В блоках питания современных ламповых усилителей, часто применяют двухполупериодную схему со средней точкой обмотки трансформатора, выпрямители на кенотронах и фильтры с дросселями. Кроме ретро вида, такая схема построения оправдывается несколькими достоинствами, которые, тем не менее, экономнее и проще реализовать их на современной элементной базе. К преимуществам, можно причислить некоторые, свойственные вакуумным приборам особенности из за чего в выпрямителе не возникает помеха при переключении диодов в выпрямительном мосте. При применении классического диодного моста, от такой помехи, можно избавиться шунтированием каждого диода небольшим конденсатором емкостью около 100 нФ, на соответствующее напряжение и применением «быстрых» диодов.

Автоматическая задержка подачи анодного напряжения — по мере прогрева катода кенотрона. Дело в том, что ресурс приемно-усилительных ламп существенно увеличивается при подаче анодного напряжения, когда катод лампы уже прогрет. Обычно это занимает несколько десятков секунд. Здесь, предлагается, пожертвовав ресурсом кенотрона, продлить жизнь усилительных ламп, однако в наши дни и кенотроны имеют изрядную ценность, кроме того, задержку подачи высокого напряжения, довольно просто организовать простой схемой таймера с исполнительным элементом в виде электромагнитного реле, на современной элементной базе.

Здесь, стоит сказать, что для работы каскада на вакуумном триоде, требуется три напряжения — отрицательное напряжение смещения (иногда, при «автоматическом» смещении, получается падением напряжения на специальном резисторе), питание нити подогрева катода или самого «прямонакального» катода — напряжение «накала» и наконец — «анодное» напряжение. При применении в блоке питания стабилизации напряжения, недопустимо стабилизировать одно или только несколько напряжений. Требуется стабилизация всех, иначе, при изменении напряжения сети, режим радиолампы может выйти за допустимые пределы.

Описываемый блок питания, построен на полупроводниках, содержит в одном корпусе два независимых блока питания — для лампового усилителя мощности и лампового-же винил-корректора. Каждый из них, состоит из относительно сильноточного источника напряжения для питания накалов ламп и слаботочного, но высоковольтного для «анодного» напряжения. Все источники стабилизированы, задержка подачи анодного напряжения осуществляется вручную — переключением тумблеров. В блоке питания, есть возможность применять «ждущий» режим — подачу пониженного напряжения накала и анодного. Такой режим, позволяет не выключать полностью усилители при длительных перерывах в прослушивании, экономя ресурс радиоламп и электричество — как и любые приборы с нитью или спиралью накаливания, при подаче напряжения накала, происходит бросок тока из-за низкого сопротивления холодной спирали, он существенно снижает ресурс приборов — чаще всего, они выходят из строя именно в этот момент. Снимать же полностью анодное напряжение на относительно длительное время, оставляя разогретым только катод нельзя — в последнем наступают необратимые изменения, именуемые «отравлением катода». Алгоритм включения блока, обратный — снимаются анодные напряжения, через пять-десять секунд можно выключать напряжения накала.

Итак. Что понадобилось для работы.

Инструменты, оборудование.

Прежде всего, обычный набор инструмента для радиомонтажа, не повредят несколько более мощные, чем обычно кусачки. Паяльник, а лучше два — небольшой, для мелочей — 25. 40Вт и покрупнее — 60. 100Вт с принадлежностями. Мультиметр. Для работы с фанерными элементами корпуса, применялась небольшая циркулярная пила, плоскошлифовальная машинка. Для декоративного покрытия — кисти, посуда. Понадобилась электрическая дрель со сверлами, нечто, для сверления маленьких (0,8. 1.5мм) отверстий на печатных платах. Специальный инструмент для рисования и изготовления печатных плат — рейсфедеры, специальная линейка, игла для корректирования дорожек, посуда для травления, небольшой удобный керн. Перманентный маркер, ножницы. Строительный или специальный, для радиомонтажа, фен для работы с термотрубками. Выдавливатель герметика. Для изготовления простейшей передней панели, понадобился доступ к компьютеру с принтером. Мелкий слесарный инструмент, «пистолет» для термоклея.

Кроме радиоэлементов и установочных деталей, понадобилась фанера 15мм для корпуса, фанера тонкая, 6мм для передней панели. ЛКМ, шлифовальная шкурка, ветошь хлопчатобумажная. Фольгированный стеклотекстолит для печатных плат, проволока медная луженная и провод монтажный различного сечения для монтажа. Термотрубка. Припой безсвинцовый, флюс, спирто-бензиновая смесь, химикаты для травления. Стяжки капроновые различной длины, герметик акриловый. Площадки капроновые для крепления стяжек. Радиаторы алюминиевые игольчатые, уголки перфорированные крепежные. Термопаста, прокладки слюдяные. Крепеж разный. Термоклей. Скотч малярный, бумага с липким слоем для печати на принтере.

Прежде всего, определился с общей концепцией. Высоковольтные источники — повышающие трансформаторы- выпрямительные мосты на быстродействующих диодах с шунтированием каждого керамическим конденсатором — стабилизаторы на высоковольтных полевых транзисторах. Высоковольтные электролитические емкости обычные, ширпотреб.

Выпрямитель-стабилизатор анодного напряжения, использовались в обоих усилителях, только настроенные на разные напряжения. Здесь, количеством и рабочим напряжением стабилитронов, устанавливают выходное напряжение стабилизатора. Транзистор Т1 – практически любой высоковольтный соответствующей структуры, диоды шунтировать пленочными или керамическими емкостями на 100…150нФ, 630В

Стабилизаторы напряжения накала ламп винил-корректора — на 7806, с добавочным кремниевым диодом в цепи общего провода (дает на входе стабилизатора прирост напряжения

0,3 вольта). Выпрямитель — мост из диодов Шоттки, также шунтированных конденсаторами (не обязательно). Лампы усилителя мощности (6Э5П) по накалу, потребляют ток значительно больший, чем 6Н9, чтобы его снизить, применено последовательное соединение нитей накала двух ламп и задействованы интегральные стабилизаторы 7812 с диодами в цепи общего провода.

Подобраны радиаторы достаточной площади и подходящие трансформаторы. Для питания нитей накала ламп усилителя мощности, нашелся стандартный ТН, для анодного напряжения ТА. Габаритная мощность оказалась с изрядным запасом, что неплохо — трансформаторы не гудят, не греются. Наличие большого количества обмоток, позволило подобрать нужное напряжение на входе стабилизатора, чтобы не перегревать регулирующий транзистор. Также, оказалось возможным ввести режим ожидания — со сниженным напряжением накала и анодным, для экономии ресурса ламп.

Трансформатор питания винил корректора — комбинированный ТАН, в нем есть как высоковольтные обмотки, для анодного напряжения, так и низковольтные сильноточные для накала. Большое количество обмоток, также позволило организовать ждущий режим.

В соответствии с размерами радиаторов, разработаны печатные платы для мелких элементов выпрямителей и стабилизаторов. Элементы, требующие охлаждения — микросхемы стабилизаторов и полевые транзисторы, в корпусах ТО-220, смонтированы навыворот и прижаты металлическим фланцем через слюдяную прокладку к радиатору. На стороне платы «к радиатору» отсутствуют токопроводящие дорожки — весь монтаж выполнен на противоположной стороне платы, «печатным» способом сформованы опорные площадки для выводов мелких элементов. Таким образом, монтаж напоминает объемный, риск замыкания на радиатор охлаждения не велик.

Аналогичным образом был смонтирован стабилизатор усилителя мощности на Г-807.

Всего радиатора два, на каждом, закреплена монтажная плата с полным набором напряжений для одного устройства — возможно, решение не слишком удачное в смысле компоновки блока питания в целом, позволило однако, удобно работать при макетировании и настройке устройств, когда блоки питания не были собраны в едином корпусе.

Конструкция корпуса своеобразная — радиаторы вынесены в заднюю открытую часть блока, при этом, платы с высоковольтными элементами несколько утоплены, случайно коснуться их рукой практически невозможно, тем более учитывая расположение блока питания в нише стеллажа.

Корпус блока собран на саморезах, стенки из толстой 15мм фанеры. В передней части блока, винтами к нижней панели закреплены трансформаторы. Центр тяжести, получился смещен к передней панели, но это удобно — при любых манипуляциях с органами управления, отдельно стоящий блок не нужно придерживать.

Вокруг трансформаторов, этакими ведьмиными кругами установлены специальные площадки для крепления к ним нейлоновых стяжек. Учитывая большое количество проводов и жгутов из них, количество площадок не излишнее — практика показала, что практически все они оказались задействованы.

Соединение блока питания с усилителями выполнено толстым многожильным кабелем. Большое количество жил, позволило формовать необходимые группы в зависимости от пропускаемого тока и назначения кабеля.

В процессе монтажа, такого рода, непременно нужно применять, хотя бы технологическую маркировку, это очень облегчает жизнь.

Блок питания без крышки и передней панели. Усилители были собраны некоторое время назад и работали с открытыми макетами своих блоков питания. В том виде было очень удобно делать настройку — подбирать напряжения, контролировать работу и прочее. Сейчас же, только проверка работоспособности и устранение возможных ошибок монтажа.

Передняя панель блока была выпилена из тонкой фанеры, после лакирования, на нее наклеиваются вычерченные в Автокаде и распечатанные на принтере блоки с поясняющими надписями. Для защиты надписей, наклейки также покрыты слоем лака. В соответствующих местах, высверлены отверстия для установки тумблеров, неоновых лампочек индикации и колодки предохранителя. Параллельно колодке, также установлена неоновая лампочка, индицирующая перегорание предохранителя.

Читайте также:  Блок питания Winard 700RWA 700W

Практика длительного использования блока, показала, что блок надежен, обладает всеми заданными электрическими параметрами. К недостаткам, следует отнести некоторую сложность коммутации режимов — тумблерами. Если предполагается делать аналогичное устройство, для использования «в чужих руках», лучше применить специальное устройство, реализующее нужные алгоритмы автоматически при помощи электромагнитных реле. Кроме того, столкнулся с необходимостью раздельных блоков питания — для каждого устройства свой, правда, это был «нештатный режим» — при переездах.

Источник

11 схем питания различной сложности

Сохранить и прочитать потом —

О пользе силикона

В полной мере сказанное относится не только к ламповым проектам, поэтому все, что будет описано ниже, пригодится и для цифровых, и для аналоговых трактов на полупроводниках.

«А в чем, собственно, проблема? Для накала существуют трехвыводные сильноточные стабилизаторы, а анодные делаются либо на тех же лампах, либо на высоковольтных MOSFET’ах», — такова была первая реакция большинства конструкторов аудио, с кем я пытался завести разговор на эту тему. А жизнь, между прочим, не так проста, как кажется на первый взгляд. Любимые всеми интегральные стабилизаторы серий LM78, LM79, LM317 и LM337 очень удобны и стоят копейки, но в технике класса High End применяются крайне редко из-за широкого спектра ВЧ-шумов, которые у них вообще не нормируются. Эти шумы не слышны, но, взаимодействуя с полезным сигналом, становятся причиной интермодуляции. А вот она уже ведет к излишней жесткости на верхних частотах и частичной потере разрешения. Если от такого стабилизатора питаются катоды прямонакальных ламп, особенно входных, вы можете вообще потерять интерес к проекту — вся грязь из сети, изрядно приправленная собственным шумом микросхемы, будет усилена и попадет на выход усилителя. Поэтому серьезные разработчики в последнее время все чаще предпочитают более сложную схемотехнику, но гарантирующую защиту от ВЧ-неприятностей. Что же касается высоковольтных стабилизаторов, то там ситуация еще хуже. Во-первых, в качестве источников эталонного напряжения используются либо кремниевые, либо газоразрядные стабилитроны, и включаются они, как правило, в катод управляющей лампы (или эмиттер транзистора, что существа дела не меняет). Во-вторых, в ламповых усилителях, особенно однотактных, проходной элемент стабилизатора находится в цепи звукового сигнала и вносит в него свой неповторимый акцент. Так что, кроме конденсаторов, усилительных ламп и трансформаторов, вы будете еще слушать какой-нибудь MOSFET или 6С33С. У меня есть подозрение, что аналогичная ситуация наблюдается и в транзисторных усилителях, но сам не экспериментировал, врать не стану.

Начнем с питания низковольтных цепей — накала, смещения и т.д. В каталоге любого крупного производителя полупроводников обязательно есть малошумящие источники опорного напряжения, и некоторые с регулируемым напряжением выхода. У этих стабилитронов только один минус — ток через переход ограничен несколькими миллиамперами, поэтому для сколько-нибудь серьезной нагрузки их придется дополнить внешним проходным транзистором. Наиболее широко распространен чип TL431, выпускаемый фирмой Texas Instruments. Напряжение шумов на его выходе около 7 мкВ на частоте 10 Гц, стоит около 16 руб. и выглядит, как обычный маломощный транзистор в пластмассовом корпусе ТО-92. Очень удачная схема его применения выложена на сайте www.klausmobile.narod.ru (рис.1).

Здесь IC1 служит источником опорного напряжения, а IC2 является датчиком схемы защиты от КЗ выхода. Достоинство схемы в том, что в качестве проходного элемента работает МДП-транзистор с изолированным затвором, поэтому при любой нагрузке (схема нормирована до 5 А) ток через стабилитрон остается в пределах нормы. R3 задает выходное напряжение, а R2 — ток срабатывания защиты. MOSFET может быть любым из серий IRF400 — 600 и устанавливается на теплоотводе. Рассеиваемая на нем мощность подсчитывается по формуле P = (Uвх — Uвых) x Iнагр. Если стабилизатор должен обеспечивать фиксированное напряжение, то его тоже легко рассчитать: Uвых = (1+R1/R2) x Uref, где Uref — опорное напряжение TL431, т.е 2,5 В. Из этого легко видеть, что для получения Uвых = 5 В, например, питания цифровой части ЦАПа, сопротивления R1 и R2 должны быть одного номинала (примерно 3,3 — 6,8 К).

Для слаботочных цепей, например, сеточного смещения или питания ОУ в тракте CD-проигрывателя, очень хороши параллельные стабилизаторы. В них регулирующий элемент включен параллельно нагрузке, что имеет неоспоримые преимущества — по переменному току его сопротивление очень мало, а по постоянному — очень велико. Вам это ничего не напоминает? Правильно, конденсатор, причем без какой-либо абсорбции, утечки, с мизерным ESR и индуктивностью. Короче, почти идеальный. Пример такого стабилизатора показан на рис. 2. Источник опорного напряжения здесь тот же — TL431, и выходное напряжение рассчитывается по той же самой формуле и подстраивается триммером R1. Стабилизация (если кто не знает) происходит за счет падения напряжения на резисторе R0. Номинал R3 выбирается с тем расчетом, чтобы ток через TL431 был в пределах 1 — 3 мА. Еще более очевидны выгоды такой схемы для построения высоковольтных стабилизаторов, но об этом ниже.

На той же TL431 легко собрать схему задержки включения анодного питания (рис. 3). Время задержки задается параметрами цепочки R1/С1 и при указанных номиналах составляет около 25 секунд. Оптрон — 293КП9В или ему подобный.

В схемах дифференциальных каскадов с т.н. long tail отрицательное напряжение для лучшей симметрии следует подавать через источник тока. Часто для этого используют лампы. А если нет места, или трансформатор питания работает на пределе и уже не потянет еще один накал?

Пригодится простенькая схемка на полевом транзисторе (рис. 4). Единственный элемент, на качество которого стоит обратить внимание — электролитический конденсатор в делителе затвора. Он должен быть либо Black Gate, либо Elna Cerafine. Собирается источник тока на крошечной печатной плате и может быть встроен в любой усилитель при апгрейде. Отрицательное напряжение на «хвост» можно получить выпрямлением напряжения накала.

Еще один возможный путь апгрейда — снижение шумов стандартных источников питания. Способ примерно тот же, т.е. шунтирование шины питания активным фильтром с определенными параметрами (рис. 5). Без какой-либо настройки он подавляет ВЧ-составляющую на 20 дБ, а если подобрать резистор в цепи эмиттера, то можно додавить их и до 40 дБ. Потребление тока самим шунтом около 10 мА, так что он вряд ли перегрузит стабилизатор. Если ток в нагрузке более 300 мА, то шунт придется умощнить (рис. 6). Для этого понадобится составной транзистор (КТ825/827 в зависимости от полярности источника), который будет забирать на себя уже около 40 мА. Зато им можно «чистить» сильноточные шины, например накальные. Если в предварительном усилителе или фонокорректоре выносной блок питания, то к сетевым помехам и шумам стабилизатора добавятся ВЧ и СВЧ-наводки на соединительные провода. Частично эта проблема решается с помощью ферритовых колец, надеваемых на жгут или отдельные проводники, но гораздо более заметный эффект дает схема, показанная на рис. 7. Она ставится на приемном конце, т.е. в самом усилителе, и питается от той же шины, которую чистит. ОУ должен быть по возможности малошумящим и широкополосным, к качеству остальных деталей особых требований не предъявляется. На рис. 8 видно, что эффективность подавления шумов на частоте 100 Гц достигает 24 дБ без точного подбора номиналов. Более подробное описание этих шумоподавителей можно найти по адресу www.wenzel.com/documents/finesse.html .

Рис. 5
Рис. 6
Рис. 7
Рис. 8

Теперь об анодном питании. В 1998 г. компания Technics начала выпускать усилители DVD Audio Ready, т.е. с расширенным динамическим диапазоном. Для них пришлось разрабатывать новые источники питания, поскольку при имеющихся невозможно было снизить шумы усилителя до нужной величины. Была запатентована схема т.н. виртуальной батареи или, как ее еще называют, схема с умножением емкости. Высоковольтный вариант такой батареи показан на рис. 9 (верхняя часть схемы). Как видите, здесь вообще нет стабилитрона, поэтому, строго говоря, это не стабилизатор, а фильтр с составным проходным элементом. Суть идеи в том, что входное сопротивление МДП-транзистора — несколько сотен мегаом, что позволяет подключить его затвор к RC-цепочке с такой огромной постоянной времени (4,7 мОм и 47 мкФ соответственно), что никакие помехи через нее не проходят. Минусы схемы — уже упомянутое отсутствие стабилизации и очень долгий заряд, время которого составляет примерно 20 мин. Аппарат с таким источником питания вообще выключать не рекомендуется.

Более серьезные люди питают аноды ламп от параллельных стабилизаторов. Помимо перечисленных выше преимуществ, они обладают и еще одним — после выключения питания быстро разряжают емкости фильтров. Кстати, об этом почему-то мало кто заботится, а ведь вреда от этого ничуть не меньше, чем при подаче напряжения на анод холодной лампы. В предах, например, конденсаторы разряжаются несколько минут, а катоды остывают значительно быстрее. Кроме того, шунты начинают потреблять ток мгновенно после включения, благодаря чему фильтр застрахован от перегрузок по напряжению в режиме холостого хода. Схема относительно простого и недорогого шунт-регулятора (рис. 10) содержит мощный высоковольтный MOSFET IRF820 и схему управления на малошумящем ОУ TL-071. Опорное напряжение задается делителем на инвертирующем входе, а напряжение шины питания контролируется через интегрирующую RC-цепочку 1,5 мОм и 1 мкФ. Между выходом ОУ и затвором транзистора стоит режекторный ВЧ-фильтр, вырезающий самый вредный участок шумового спектра. Обратите внимание, что нагрузка подключается к шинам в том месте, где припаяны элементы делителя, еще лучше подключить верхнюю точку интегрирующей цепочки непосредственно к потребителю, например, к анодной обмотке выходного трансформатора. Между выпрямителем и стабилизатором должно быть включено либо сопротивление, на котором будет падать разница напряжений, либо, что значительно лучше, мощный источник тока. Такой, например, как на рис. 11 слева. Это вообще очень интересная схема, ее автор, Манфред Хубер (http://home.t-online.de/home/MHuber/bjtreg.htm) уверен, что она дает тот же эффект, что и тефлоновый конденсатор емкостью 1000 мкФ, включенный параллельно нагрузке. Я пробовал запитывать от этого стабилизатора фонокорректор с выходным трансформаторным каскадом на 4П1Л, разница по сравнению с виртуальной батареей действительно заметна на слух. Во-первых, бас становится более собранным, заметно уменьшается интермодуляция, схема — менее чувствительной к качеству трансформатора. Очевидно, возвратный путь сигнала на землю здесь намного короче, да и выходное сопротивление источника практически не зависит от частоты. Заодно несколько советов: если выходное напряжение не должно регулироваться в широких пределах, дорогие полевые транзисторы BSS135 (около 120 руб. каждый), работающие как источники тока стабилитронов LM4041 и ZPD30, можно заменить обычными сопротивлениями. Их номинал рассчитывают так, чтобы через них протекал ток 1,3 мА. Транзисторы ZTX458/558 фирмы Zetex с напряжением Uкэ = 450 В у нас найти невозможно, зато есть недорогие аналоги Philips и Motorola. Ток стабилизатора рассчитывается по формуле I = 1,23/(P1 + R2), а напряжение вот как: Uвых = 30(1 + (P2 + R9)/R8). Число 30 означает напряжение стабилитрона D4, если будет другой, нужно внести поправку. Стабилитронов здесь бояться не надо — шум D4 гасится цепочкой R5-C2-C5, а D5 выполняет сугубо защитные функции, и в нормальном режиме лавинного пробоя в нем нет. Транзисторы Q2 и Q8 устанавливаются на теплоотводы, способные рассеять 6 — 8 Вт.

Читайте также:  Зарядка блок питания адаптер для Asus X201E

Рис. 10
Рис. 11

Приятных вам экспериментов, и будьте осторожнее с высоким напряжением!

Подготовлено по материалам журнала «Салон AudioVideo», февраль 2017 г. www.salonav.com

Источник



Изучаем резонанс. Часть 2. Импульсный БП для лампового усилителя

Техзадание

Попробую сформировать техзадание, а заодно поковыряю трансформатор.
Большинство ламповых усилителей для домашнего использования имеют примерно одинаковые энергетические характеристики.
Я возьму за основу РР на 6П3С, смещение автомат, стандартная схема.
Это как правило по 3 баллона в канале – пред/фазик – двойной триод типа 6Н8С и пара 6П3С на выходе.
Нам нужно просто анодное – 250-280В 0.5А-0.8А. И накал – 6.3В 3-4А. Примерно.
Так как большого размера окна, куда можно накрутить много витков вторички у нас нет, то начну с малого, с того, что точно поместится.

Итак, есть схема:

В общем то ничего сложного, пересчитать трансформатор и все.

Но когда я сел за расчеты, то понял, что в лоб проблему не решить.

В расчете дано, что вторичное напряжение одно, ток фиксирован, и изменение нагрузки не планируется.
У меня же минимум два напряжения, одно регулируемое, второе прицепом. Мощность тоже различная.
В общем по расчетам, требуемое число витков первички у меня получилось от 24 до 26.5, в зависимости от минимальной рабочей частоты для данного трансформатора.

Расчеты я делал на бумажке, приготовился уже мотать, но решил не заморачиваться, и соблюсти только расчетные данные по резонансной цепи. С напряжениями потом разберемся.
Поэтому намотал я его по аналогии с трансформатором из предыдущего описания – точнее из даташита, с корректировкой вторичных обмоток.

А именно:
Первичка – 36 витков – литц 60×0.1 мм.
Самопитание – 3+3 витка – одножильный 0.4 мм.
Вторичка – 6.3В – 1+1 виток – литц 85×0.1 мм
Вторичка – 250В – 40 витков – 0.4 мм одножильный провод.
Сердечник ER3542, секционирован на две секции.

Порядок намотки:
На «длинную» секцию наматываю первичку.
Получается примерно 3.5 слоя.
Между слоями прокладка из липкой ленты.
Поверх первички – обмотка самопитания.
На «короткой» секции мотаю анодную, так-же, с межслойной изоляцией, следом накал.
Все поместилось, крышка одевается с большим зазором.

Теперь индуктивность рассеяния – она тут получается повыше – так как на вторичке витков поменьше…
Проверим в работе…

Осталось подобрать зазор и можно запускаться.
Для организации нужной индуктивности в этом трансформаторе оказалось достаточно проложить стандартный лист 80 гр/м 2 в один слой по центральному керну и с боков.

Ну что? Стартуем? Естественно первое включение через лампочку!

Нагрузка – на накал автомобильная лампа 12В 21+5Вт, на анод лампа от подсветки холодильника 220В 15Вт.

Старт прошел успешно, к сожалению ничего не взорвалось, напруга регулируется, частота тоже.

Ну на лампочку от холодильника любой дурак сможет работать, да и автолампа не нагрузка.
Давай- ка мы тебя подгрузим?

В качестве нагрузки я решил использовать «тяжелые» по накалу лампы, из найденных в запасах – 6Н13С. Ток накала на один баллон – 2.8-3А, почти как у четырех 6П3С. По аноду проблем нет, есть куча лампочек на 220В 40-60Вт.
То есть 100Вт нагрузки хватит в анод – даже с сильным запасом на «средний» домашний push-pull.
Пробую включить – запуск – и тут же останов!

Защита, ктоторая в даташите указана как OVP (Over-Voltage Protection) не дремлет и честно отрабатывает свою функцию!
Как я уже говорил, при работе в резонансном режиме, напряжение пропорционально увеличивается на всех обмотках трансформатора. Поэтому растет и самопитание контроллера.

А теперь надо подумать, как сделать так, чтоб БП тянул нужную мне нагрузку и при этом не падал в OVP.
Может все же намотать транс ближе к моим расчетам? То есть уменьшить число витков в первичке?
Отматываю от первички 6 витков. Откусываю хвост, понимая, что домотать его обратно не получится. Собираю.
Индуктивность уменьшилась, пришлось убрать прокладки с боковых частей магнитопровода.

Пробую через лампочку. Запустилось. Отключаю лампочку, включаю напрямую. Тишина! То есть даже запуска нет! Хотя питание контроллера – 15.4В – в норме для пуска… Ставлю назад лампу в цепь 220В – есть запуск!
Да что за ерунда?

На свой страх и риск, поставив минимальные нагрузки, пробую запустить при закороченной токовой защите.
Есть запуск! Странно…
С меньшим числом витков первички при резком росте питания видимо происходит выброс в цепи токовой, который «лочит» контроллер напрочь…
А через лампу происходит своего рода «софт старт» по высокой стороне, и если и есть какой выброс – то он не достаточен для срабатывания токовой.
Почему это происходит, я не выяснил, может разводка ПП как-то влияет…
Интересно, а прибор его не успевает засечь, как я не пытался…
Но факт есть факт – коротишь токовую – все работает.

А это не нормально!
Значит надо вернуть все назад и домотать тогда накальную обмотку, чтоб получить 6.3В под нужной нагрузкой, и не вылезти за OVP на самопитании.

Перематываю первичку – теперь там снова 36 витков. А на накал мотаю 2×1.5 Витка.
Так как для такого малого напряжения невозможно намотать целое число витков – приходится колхозить вывод средней точки на верх транса.

Запуск с новыми данными – все стартует – отлично!

Нагрузка – лампа 6Н13С и пара ламп — 220В 15Вт и 220В 60Вт.

Подтыкаю еще одну 6Н13С – и опа, снова OVP! …

Да. Для маленького РР усилителя все нормально. Суммарная нагрузка около 100Вт .Но мне же надо понять, где его предел? Когда же сработает токовая не от КЗ, а от нагрузки?
И так уже токоизмерительный резистор состоит из двух резисторов по 0.33 Ома…
Все же придется делать стабилизатор на питание контроллера…
И отказаться от OVP.
Для мощных решений.
Отключаемый стаб, если что. Как то так…

Ну, а пока вешаю сопли… Не люблю макетные платы, и навесной монтаж. Но перед изготовлением новой ПП надо все проверить!
В том числе и тепловой режим стаба. Я использую LM317. Этот стабилизатор легко конфигурить, он достаточно надежен.
Можно было бы повесить резистор и стабилитрон, но это на любителей рискнуть.
Особенно при таком диапазоне входных напряжений на стабилитроне.
Там 15.6 на старте, и на 23.5 отключается БП – значит бывает и будет явно выше!

Я почему думаю про OVP? В принцпие, это полезная фишка. В отличие от OLP (Overload Protection), которая отслеживает ток через силовые ключи, OVP позволяет отследить проблемы в ОС. Ведь если отключить обратную связь, то контроллер начнет снижать частоту, что вызовет рост напряжений на всех вторичках. Хорошо, если это «отловит» токовая? А если нет – первыми полягут электролиты и далее со всеми вытекающими…

Читайте также:  Блоки питания аккумуляторы для ноутбуков

Но сдругой стороны, в даташитной схеме стоит стабилизатор изначально и OVP нужна только для защиты контроллера от перенапряжения при питании от собственного транса.

В общем ваяю наколенный стаб на 17-18В и пробую!

И вот оно счастье то!:)
Нагрузка около 40W.

И далее нагрузка 2×6Н13С+ автолампа, 220В 60Вт+40Вт+15Вт.

Теперь при любой нагрузке размах импульсов одинаков, что видно на синей осциллограмме.
Обратите внимание на зависимость частоты от нагрузки – здесь это хорошо видно.

Ну и самое главное, наконец-то добился срабатывания токовой!
Дело в том, что на холодные лампы БП стартует, и через секунду валится в защиту.
Если отключить или лампу 40Вт из анодной или вынуть одну 6Н13С – старт нормальный. Потом, после прогрева накала ламп – можно подтыкать на ходу что угодно – уже не отключается.
Это видно на желтой линии при максимальной нагрузке – размах приближается к расчетным 0.6В для срабатывания токовой защиты.

Но это не беда. В токовую установлены сопротивления 2×0.33Ом, что соответствует току около 4А, при которых может сработать защита. Для современных полевиков это даже еще не рабочий ток, не говоря об аварийном. А «растолкать» холодную лампу не так просто – это самая большая проблема.

Да и в реальной схеме, даже если не использовать задержку подачи анодного, ток через лампу будет течь только после прогрева катодов, и поэтому на момент старта анодная обмотка будет работать только на емкость фильтра, и аварийной ситуации с перегрузкой просто не возникнет.

Ну, а захочется большего – ничего не мешает поставить резисторы меньшего сопротивления.
Но это если уж очень надо…

Итак, окончательная схема:

Так как при внесении изменений в разводку, плата вынужденно увеличилась в ширину – то решил добавить еще и обмотку смещения с выпрямителем. Вдруг пригодится когда?
Запуск с новой платой прошел без эксцессов.

В общем все нормально.
Измерил пульсации под нагрузкой на анодном и накале.

Синий – анод. Желтый – накал.
Что удивило – в аноде стоит один кондер – пленка на 1 мкФ 630В – никаких элетролитов и пульсация всего 1В! Ну ничего, электронный дроссель это вылечит легко!

Единственное, что смущает – тепловой режим диодов выпрямителя накала. Я для этого поставил два сдвоенных STPS3045 в параллель. На 7А тока через 15 минут руку на радиаторе держать уже не комфортно.
Ну оно и понятно, напряжение и так маленькое, а еще и по 0.5В на диодах падает.
Для такого тока – более 3Вт на корпус получается. Выгоднее накал питать от 12В и лампы в послед, но это конечно извращение. Лучше уж, если совсем все плохо, радиатор поставить побольше.

Зато рвет шаблон силовая секция! Радиаторы не нагрелись. Совсем. Как будто БП не работает, а просто лежит на столе.
Даже радиатор стабилизатора на ощупь градусов 35, а эти холодные! Закрадывается мысль о целесообразности применения там радиаторов вообще. Вот что значит мягкое переключение!

Для финального теста я решил все таки приблизить условия к реальным насколько возможно.
Подал накал на 4×6П3С-Е и 2×6Н8С.
А также на коленке собрал электронный дроссель, его видно в правом нижнем углу, нагрузив его на лампы 60Вт и 15Вт в параллель.
Все равно после 20Вт у 6П3С начинает краснеть анод.

Погонял немного, пока под лампой 60Вт не начала тлеть бумага и не повалил дым.
Силовые ключи холодные, Шоттки в накале нагрелись, но уже не так сильно, но зато нагрев стабильный, примерно 60 градусов. Еще прямо на радиатор светила лампа, и это похоже немного исказило картину, но в общем и целом – задача выполнена.

Итоги и выводы

Ну и в заключении немного впечатлений и выводов о работе БП.
Как я уже говорил, при работе резонансной цепи, напряжение меняется на всех обмотках. Это не смертельно, но нужно обращать внимание, например, на рабочее напряжение электролитов.

При запуске, пока нити холодные и ток через них сильно более паспортного, напряжение на анодной обмотке может быть выше процентов на 10-15 от номинала, и потом плавно, с прогревом нитей накала, уменьшается до нормы. Естественно, нужно будет применять плавную подачу анодного, это очевидно для такой организации питания.

Также очень четко работает защита от перегрузки. Иногда просто не понятно, отчего блок не стартует, но контроллер не дремлет и отключается еще до начала генерации.

Поэтому перегрузить его при нормально работающей защите не удастся никак.
Топология LLC resonance требует работы под нагрузкой – тогда эффективность максимальна.
Поэтому питать им лампы – как раз нормальное применение. Только долгий прогрев накала затягивает старт БП в нагруженном режиме, но это не беда, потом все нормализуется.

Класс А, работа на драйверы подсветки экранов, сверхъяркие диоды, любая другая активная и постоянная нагрузка – вот прямые области применения этой топологии.

Из недостатков – относительная сложность намотки трансформатора. Хотя что мешает самому сделать секционирование катушек?
Я не стал – заказал готовые. Не пробовал мотать одножильным проводом первичку – все же законы физики обмануть сложно, и, мне кажется, результат будет предсказуемо плохим.
Требуется измерение индуктивности трансформатора. Без этого никуда – на глаз никак не получится попасть в нужный диапазон.
Хотя может кто-то и попытается.

В остальном – мне очень понравилось — могу рекомендовать к повторению!

На радостях жду доставки FSFR2100 и FSFA2100, последняя, судя по даташиту, тоже интересна, но это уже ШИМ.

Когда статья уже была написана и выложена на портал, я задался рядом вопросов: «Ну и что? Что дальше то? На полку? Под разбор?“
И все же решился. Надо доделать до конца.
И если у нормальных людей выбирается лампа, схема на ней, а вокруг строится питание, трансформаторы, компоновка, то у меня все началось с другого конца. С питания.
Порылся в закромах, нашел пару трансов, перемотал остатками провода.

РР. Гу-17+ ЕСС88. Возможность работы в ультралинейном и пентодном режиме.
Выбор режима перемычками. Смещение — фикс, раз уж во второй версии добавил обмотку смещения.

Выбор ламп не случаен. Мне нужно было вписаться в «свой“ стандартный размер по ширине и глубине, чтоб влезло в стойку и не выпирало в высоту.
Из того, что было — 6Э5П, 6П1П и Гу-17. Последние помощнее — вот они и пошли в дело.
Заодно перемотал накал на 12,6В, так полегче диодам при плотной компоновке.
25Вт лампового звука на 5 Ом с резонансным питанием. В UL. В пентоде побольше.
Я думаю, мне хватит.

В динамиках тихо. Возбудов, а также артефактов с частотой преобразования не замечено.
Вот вам и вариант практического применения.
Схема аналогичная той, что опубликована в моей статье про усилитель на трансформаторах ТАН.
А самое главное — цель достигнута, процесс завершен успешно.

Файлы

Схемы и платы здесь:

Даташит на FAN7621 и руководство по расчету AN-4151 легко можно найти в сети или в первой части моей статьи.

Источник

Блок питания для лампового усилителя

Любой ламповый усилитель нуждается в источнике питания. Как правило, требуется от 2 до 4 сотен вольт постоянного тока для питания анодноых цепей, и 6,3 вольт для питания накалов ламп.

Конечно же, есть лампы, которые требуют более высокого напряжения анодного питания.

Существует несколько технических решений, и до сих пор продолжаются споры о том, какое из них лучше.

Источник питания лампового усилителя можно условно разделить на три части, и каждую из них мы разберём отдельно.

1. Трансформатор

Должен иметь одну или несколько низковольтных вторичных обмоток для питания накалов ламп.

Для питания анодных цепей потребуется вторичная обмотка высокого напряжения.

Если будет использоваться двухполупериодный выпрямитель по схеме со средней точкой, тогда нужен будет отвод от середины вторичной обмотки. Обычно такая схема применяется, если для выпрямления используется лампа-кенотрон.

При мостовой схеме выпрямления отвод от середины обмотки не нужен

Для кенотрона ещё потребуется отдельная обмотка — для питания его накала.

Токи, потребляемые накалами каждой лампы можно найти по справочнику, а токи цепи анодного питания зависят от ламп, схемы их включения и настройки режима. Для большинства схем пределы этих токов известны.

Если в выходном каскаде усилителя применяется фиксированное смещение — потребуется ещё одна дополнительная обмотка.

Где можно достать подходящий трансформатор?

  • Заказать на заводе. Сейчас относительно не дорого можно заказать намотку тороидального трансформатора по параметрам заказчика. Многие лампостроители знают завод в Тверской области.
  • Трансформатор от ламповой радиолы. На сайтах объявлений полно предложений, которые можно найти по запросу «трансформатор от радиолы». Убивать живую радиолу ради трансформатора я бы не стал. Стоит учитывать, что большинство трансформаторов в ламповых приёмниках рассчитано на питание одного канала УЗЧ. Поэтому для стерео усилителя потребуется два таких трансформатора, причём одинаковых

Источник