Меню

Автоматический регулятор напряжения типа МСС

Блок питания генератора мсс

Предназначены для работы в качестве основных источников питания электрической энергией силовых и осветительных установок на судах неограниченного района плавания. Применяются для сопряжения с дизелями или турбинами.
Синхронные генераторы типа МСК изготовляются мощностью 375 кВА с частотой вращения 1000 об/мин и мощностью 1250 кВА с частотой вращения 750 об/мин.
Серия синхронных генераторов МСК включает четыре машины от 625 до 1000 кВА с частотой вращения 1000 об/мин и шесть машин от 625 до 1875 кВА с частотой вращения 1500 об/мин.
Синхронные генераторы типа МСС изготовляются мощностью 300 кВт с частотой вращения 750 об/мин.
Исполнение — горизонтальное, на подшипниках качения или скольжения, с самовентиляцией по замкнутому циклу через воздухоохладители.
Климатическое исполнение — ОМ4 по ГОСТ 15150-69.
Возбуждение — от статической системы самовозбуждения по принципу фазового компаундирования, с автоматическим регулированием напряжения при помощи корректора напряжения.

Расшифровка обозначения генератора типа МСК-375-1000:
М — машина (морская);
С — синхронная;
К(С) — с кремнийорганической изоляцией (с самовозбуждением);
375 — мощность, кВА;
1000 — частота вращения, об/мин.
Генераторы типа МСК-1250-750 изготовляются по МРТУ 16-512.100-70; МСК-375-1000 — по ТУ 16-528.284-84 ИАЕГ 528454.001.
Генераторы серии МСК на 1000 об/мин изготовляются по ТУ 16-512.310-73; на 1500 об/мин — по ТУ 16-528.283-84.
Генераторы МСС-300-750 ОМ4 изготовляются по ТУ 16-92 ИАЕГ 528254.007 ТУ.

Тип генератора

Мощность, кВт

Напряжение, В

Частота вращения, об/мин

Тип
подшипников

* Исполнение морское
** Исполнение тропическое
Примечания:
1.Для генераторов на 1500 об/мин КПД указан при 75 %-ной нагрузке.
2.Генераторы типов МСС-300-750 ОМ4 и МСК-1250-750 удовлетворяют требованиям Правил Российского Морского Регистра судоходства.

Источник



Автоматический регулятор напряжения типа МСС

Система самовозбуждения основана на принципе фазового компаунди­рования с электромагнитным сложением сигналов. Система обеспечивает точность поддержания напряжения генератора при установившемся тепловом состоянии в пределах ± 2,5 % номинального значения при изменении тока статора от 0 до 100 % и коэффициенте мощности от 0,7 до 0,95. Отклонение частоты вращения генератора может составлять при этом 2 % номинального значения. Время первого достижения установившегося значения напряжения генератора при прямом пуске короткозамкнутого двигателя на холостом ходу мощностью 30 % от мощности генератора не превышает 0,8 с.

Трансформатор фазового компаундирования имеет две первичные обмотки – токовую (последовательную) LTA и напряжения (параллельную) LTV – и одну вторичную (обмотку обратной связи) L2. Трехфазная то­ковая обмотка LTA ТФК включается последовательно с нагрузкой генератора. Трехфазная обмотка напряжения LTV включается между линейными про­водами на выходе генератора. Вторичная обмотка L2 подключается че­рез блок силовых выпрямителей VD1…VD6 к обмотке возбуждения генера­тора LG и к рабочим обмоткам дросселя отбора LP.

Обмотка управления LУ через выпрямитель VD7…VD10 подсоединена к отпайкам обмотки напряжения LTV ТФК. При изменении тока в обмотке управления LУ дросселя отбора LO c помощью резисторов R1 или R2 или по­тенциометра R4 изменяется магнитная проницаемость сердечника LO, что приводит к изменению индуктивного сопротивления рабочих обмоток дрос­селя. Распределение токов между параллельно включенными приемниками: обмоткой возбуждения генератора и рабочими обмотками дросселя, будет за­висеть от их сопротивления, т.е. от величины сопротивления резисторов R1 и R2 и положения потенциометра R3. Таким образом, с помощью резисторов R1 и R2 можно изменять уставку напряжения на выводах генератора. Потен­циометр R4 подключен на вторичную обмотку трансформатора тока в блоке параллельной работы БПР. Первичная обмотка этого трансформатора нахо­дится под током нагрузки генератора. Сигнал, снимаемый с потенциометра и зависимый от тока нагрузки, будет влиять на величину тока управления в дросселе, следовательно, на индуктивное сопротивление рабочей обмотки дросселя и в результате на ток возбуждения генератора. При этом чем больше будет сигнал, снимаемый с потенциометра, тем мягче будет характери­стика.

Таким образом, положение потенциометра R4 будет влиять на статизм характеристики регулятора. Необходимость изменения которого возникает при параллельной работе генераторов. Параллель­но работающие генераторы должны иметь одинаковую уставку и одинаковый статизм характеристик регуляторов. Если эти условия соблюдаться не будут, генераторы будут нагружаться неравномерно: генератор с более жесткой ха­рактеристикой будет больше нагружаться. Неравномерная нагрузка не позволит получить номинальную мощность от генератора с более мягкой характеристикой. При автономной работе генератора выставляется са­мая жесткая характеристика. Для этого закорачивается вторичная обмотка трансформатора тока в БПР специальной перемычкой, и сигнал с потенцио­метра R4 не снимается.

Статизм характеристики регулятора под воздействием внешних факто­ров может измениться, что повлечет за собой неравномерную нагрузку при параллельной работе. Чтобы этого избежать, в регуляторе предусмотрено ав­томатическое распределение реактивных нагрузок с помощью уравнительных соединений между параллельно работающими генераторами в цепи постоян­ного тока. Обмотки возбуждения генераторов соединены параллельно через блок-контакты автоматов этих генераторов. Если мощность генераторов раз­лична, обмотки возбуждения соединяются через уравнительный резистор, ко­торый включен в цепь возбуждения генератора меньшей мощности. Автома­тическое распределение реактивных нагрузок при параллельной работе гене­раторов МСС с генераторами МСК и ГСС обеспечивается с помощью допол­нительного устройства.

Для обеспечения безотказного начального возбуждения генератора на валу ротора установлен однофазный генератор начального подмагничивания G Н.П. с постоянными магнитами, включенный через селеновые выпрямители VD11…VD14 на обмотку возбуждения СГ. Мощность генератора начального подмагничивания порядка 80 ВА. После окончания процесса самовозбужде­ния, когда напряжение на выходе СГ приблизится к номинальному, вы­прямители VD11…VD14 закроются напряжением, снимаемым с ТФК, и энер­гия с генератора начального подмагничивания на обмотку возбуждения СГ поступать не будет.

Для гашения поля генератора в экстремальных ситуациях ( при коротком замыкании внутри генератора или на выходе генератора до ав­томата) установлен рубильник гашения поля КГ.П..

Элемент схемы, который обеспечивает нужную зависимость между то­ком возбуждения и коэффициентом мощности генератора, называется компа­ундирующим КЭ. В качестве такого элемента в данной системе служит маг­нитный шунт, магнитный шунт прикладывается к сердечнику ТФК через изо­ляционные прокладки. Количество этих прокладок влияет на уставку генера­тора. Чем больше прокладок, тем выше будет уставка по напряжению у генератора.

Источник

Система самовозбуждения и саморегулирования судовых синхронных генераторов серии МСС. Ее работа, характерные неисправности и наладка

Содержание

  1. Основные технические данные системы.
  2. Принципиальная схема системы и ее элементы
  3. Исполнение и размещение элементов системы.
  4. Проверка системы и ее неисправности.

Основные технические данные системы.

Система самовозбуждения основана на принципе фазового компаундирования с электромагнитным сложением сигналов. Система обеспечивает точность поддержания напряжения генератора при установившемся тепловом состоянии в пределах ±2,5% номинального значения при изменении тока статора от 0 до 100% и коэффициента мощности от О,7 до 0,95. Отклонение частоты вращения генератора может составлять при этом ±2% номинального значения. Время первого достижения установившегося значения напряжения генератора при прямом пуске коротко-замкнутого электродвигателя на холостом ходу мощностью 30% от мощности генератора не превышает 0,8 с.

Читайте также:  Вентилятор для блока питания fsp

Принципиальная схема системы и ее элементы (рис. 21.12)

Элементами системы автоматического регулирования являются: синхронный генератор с обмоткой возбуждения ОВ; генератор начального пуска ГНП; трехобмоточный трехстержневой трансформатор фазового компаундирования ТрФК; блок силовых выпрямителей БСВ; реактор отсоса РО; выпрямитель начального пуска ВnНП; выпрямители управления ВnУ; резистор уставки напряжения R4; резистор статизма R1; регулируемый резистор R2; резистор термокомпенсации R3; пакетный переключатель В2.

Принципиальная схема системы и ее элементы

Реактор отсоса РО осуществляет ручную подрегулировку напряжения генератора, а также обеспечивает параллельную работу генераторов серии МСС с генераторами серий МСК и ГСС.

Трансформатор фазового компаундирования ТрФК имеет две первичные обмотки — токовую (последовательную) ОТ и напряжения (параллельную) ОН, а также одну вторичную обмотку 02. Токовые обмотки ОТ трансформатора ТрФК включаются последовательно с нагрузкой генератора. Параллельные обмотки ОН трансформатора ТРФК включаются на напряжение генератора со стороны нагрузки. Вторичные обмотки 02 подключаются к блоку силовых выпрямителей БСВ и к рабочим обмоткам ОР реактора отсоса РО. После выпрямления ток вторичных обмоток 02 трансформатора ТрФК частично подается в обмотку ротора генератора, а частично отсасывается в рабочие обмотки реактора отсоса.

Уставка напряжения на выводах генератора достигается изменением значения тока отсоса, в свою очередь изменяющего ток ротора генератора. Изменение тока отсоса осуществляется путем разного подмагничивания реактора отсоса постоянным током (током управления, подаваемым в обмотку управления ОУ). Ток управления (уставка напряжения) изменяется вручную резистором уставки R4.

Обмотка управления через выпрямитель BnУ и последовательно включенные резисторы R2-R4 подключается на часть линейного напряжения генератора (на отдельную обмотку напряжения трансформатора ТрФК).

Работа системы. Для обеспечения безотказного начального возбуждения генератора на валу ротора установлен однофазный генератор с постоянными магнитами, включенный через селеновые выпрямители ВnНП на обмотку ротора.

Для гашения поля генератора в схеме установлен рубильник гашения поля РГП.

Напряжение генератора регулируется совместной работой элементов трансформатора с магнитным шунтом.

Ток возбуждения генератора пропорционален напряжению обмотки 02 трансформатора ТРФК (а следовательно, и ее потокосцеплению). Потокосцепление обмотки 02 определяется суммарной намагничивающей силой н. с.), создаваемой всеми обмотками трансформатора. При этом н. с. последовательной и параллельной обмоток складываются геометрически (под углом 90°) и являются намагничивающими. Намагничивающая сила обмотки 02, питающей силовой выпрямитель и реактор отсоса, является размагничивающей.

При отсутствии корректора схема работает таким образом.

При холостом ходе генератора действует н. с. обмотки ОН; н. с. обмотки ОТ отсутствует. При нагрузке и изменении значения коэффициента ее мощности н. с. обмотки ОН, пропорциональная напряжению генератора, остается практически неизменной, а н. с. обмотки ОТ, совпадая по фазе с током нагрузки, изменяется пропорционально значению последнего. Вследствие этого суммарная н. с. также изменяется в зависимости от значения коэффициента мощности нагрузки.

Параметры компаундирующего трансформатора ТРФК выбирают такими, чтобы суммарная н. с. обеспечила необходимое потокосцепление обмотки 02, а следовательно, и ток обмотки возбуждения, необходимый для поддержания постоянного выходного напряжения генератора с учетом требуемого тока отсоса для ручной подрегулировки напряжения. Для поддержания постоянного выходного напряжения генератора при изменении частоты в данной схеме параметры компаундирующего трансформатора выбирают такими, что при постоянной частоте и при изменении тока нагрузки от 0 до 100% напряжение генератора возрастает.

Вследствие нагревания обмотки возбуждения генератора и изменения в связи с этим ее активного сопротивления несколько изменяется (уменьшается) ток выхода системы автоматического регулирования, что приводит к изменению (снижению) напряжения на генераторе (тепловое отклонение уставки). В данной системе самовозбуждения тепловое отклонение напряжения составляет 3% в сторону снижения напряжения. Изменение уровня напряжения генератора (уставки напряжения) достигается изменением значения сопротивления резистора уставки R4, включенного в цепь управления реактора отсоса. При увеличении сопротивления резистора уставки ток управления реактора уменьшается, ток отсоса реактора также уменьшается, ток в обмотке возбуждения генератора увеличивается и выходное напряжение генератора возрастает. Резистор уставки позволяет регулировать выходное напряжение в пределах от +2 до -7%.

Автоматическое распределение реактивных нагрузок при параллельной работе генераторов серии МСС одинаковой и разной мощности достигается с помощью уравнительных соединений между параллельно работающими генераторами в цепи постоянного тока. В этом случае обмотки возбуждения генераторов соединяются параллельно. Если мощность генераторов различна, обмотки возбуждения соединяются с включением уравнительного резистора в обмотку возбуждения генератора меньшей мощности для уменьшения уравнительных токов и выравнивания напряжения.

Автоматическое распределение реактивных нагрузок при параллельной работе генераторов МСС с генераторами МСК и ГСС обеспечивается с помощью дополнительного устройства.

Исполнение и размещение элементов системы.

Элементы системы выполнены отдельными блоками: трансформатор фазового компаундирования ТрФК (см. рис. 21.12) в открытом исполнении; реактор отсоса РО, блок силовых селеновых выпрямителей БСВ и выпрямители начального пуска ВnНП встроены в одни кожух брызгозащищенного исполнения; блок дополнительного устройства ДУ на отдельной панели открытого исполнения, на которой смонтированы резисторы R1-R3, резистор уставки напряжения R4 и пакетный переключатель В2.

Все элементы системы работают при естественном охлаждении и располагаются в удобном для монтажа месте. Трансформатор фазового компаундирования ТрФК и дополнительное устройство ДУ встраиваются в генераторную секцию распределительного щита.

Проверка системы и ее неисправности.

При автономной работе систему настраивают изменением зазора между магнитным шунтом и стержнями трансформатора ТРФК, используя изоляционные прокладки разной толщины.

Указанная регулировка выполняется на холостом ходу. При этом с увеличением зазора ток выхода трансформатора увеличивается, вследствие чего возрастают ток ротора и напряжение на генераторе. С уменьшением зазора происходит обратное. При холостом ходе зазор устанавливается таким, чтобы при отключенном реакторе отсоса и частоте тока генератора, равной 51 Гц, напряжение на генераторе составляло 110-113% номинального. Ориентировочный зазор шунта с каждой стороны составляет: 10-12 мм МСС-250, 6-9 мм МСС-375.

После регулировки необходимо включить реактор на вторичную обмотку трансформатора, установить частоту тока 51 Гц и с помощью резистора уставки установить на генераторе напряжение, равное номинальному. Резистор параллельной работы R1 при этом должен быть зашунтирован переключателем В2.

Читайте также:  Отзывы про Daewoo Electronics DSL 20M1TC

Пределы ручной регулировки напряжения генератора проверяют резистором уставки. При необходимости изменения этих пределов в сторону увеличения напряжения генератора (больше 100%) следует увеличить сопротивление резистора R2 на дополнительном устройстве.

При включении 2400 витков обмотки управления реактора отсоса для генератора МСС-250 значение тока управления на холостом ходу ориентировочно составляет 0,53 А. При включении 2600 витков обмотки управления для генератора МСС-375 этот же ток ориентировочно составляет 0,58 А.

Если при настройке наблюдается резкое падение напряжения генератора при нагрузке, то следует изменить фазировку обмоток напряжения на 180°.

При использовании генераторов МСС-250 и МСС-375 с системами возбуждения на 230 В обмотка напряжения ОН должна быть включена на треугольник.

Перед включением генераторов на параллельную работу необходимо расшунтировать резистор R1 и установить такое значение его сопротивления, чтобы было обеспечено постоянство внешней характеристики генератора при изменении тока статора от нуля до IНОМ порядка 3-4% И=Uх.х.

При правильной фазировке ток управления реактора отсоса должен быть тем больше, чем меньше коэффициент мощности.

Основным признаком неисправности системы является нарушение режима возбуждения. Любая неисправность вызывает повышение возбуждения генератора или его снижение, а при параллельной работе и наличии уравнительных связей со стороны перемениого тока — еще и повышение или понижение реактивной мощности генератора. При появлении неисправности генератор необходимо отключить и тщательно проверить все цепи и устройства. Обнаруженную неисправность следует устранить, восстановив нарушенную цепь, заменив или отремонтировав неисправный элемент.

Перечень возможных неисправностей системы, их причины и способы устранения приведены в табл. 21.4.

Неисправности систем самовозбуждения и саморегулирования генераторов серии МСС и способы их устранения

Литература

Судовой механик: Справочник. Том 3 — Фока А.А. (2016)

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

09.09.2015

Система самовозбуждения и автоматического регулирования тока возбуждения генераторов типа МСС

На судах установлено множество типов генераторов. Каждый генератор снабжен автоматическим регулятором. Схемы регуляторов очень разнообразны, но построены по общим принципам. В качестве примера рассмотрим наиболее простую систему самовозбуждения и автоматического регулирования тока возбуждения генераторов типа МСС.

Примем такой порядок изучения схемы: самовозбуждение генератора; трансформатор фазового компаундирования (ТрФК); корректор напряжения; прочие элементы схемы.

Самовозбуждение генератора на холостом ходу осуществляется за счет как остаточного намагничивания ротора, так и дополнительной меры — с помощью генератора начального возбуждения ГНВ (рис. 1).

Ротор, имея небольшое остаточное намагничивание, при вращении приводным двигателем своим слабым магнитным полем пересекает неподвижную трехфазную обмотку статора. На зажимах генератора в точках А, В, С появляется небольшая э. д. с., которая создает ток в обмотке напряжения ОН. Через обмотки ОТ ток не протекает, потому что еще разомкнут автомат генератора. Так как обмотка ОН имеет большое число витков, то ее сопротивление большое, следовательно, ток в ней очень мал.

Система самовозбуждения и автоматического регулирования тока возбуждения генераторов типа МСС

Естественно, обмоткой ОН в трансформаторе ТрФК наводится малая по величине м. д. с., которая в суммирующей обмотке ОС наводит небольшой потенциал (э. д. с.). Теперь обмотка ОС является источником электроэнергии и через выпрямитель Вп1 в обмотку возбуждения течет ток подмагничивания. Но резкого увеличения магнитного потока ротора может не произойти, так как ток возбуждения, поступающий с обмотки ОС, может оказаться незначительным. Это объясняется большим сопротивлением обмоток ОН, ОС и выпрямителей Вп1 в еще не открывшемся состоянии (нужен более высокий потенциал на обмотке ОС, чтобы открыть выпрямитель Вп1).

Для начального возбуждения применяют генератор начального возбуждения ГНВ. Небольшой по габариту, он установлен прямо в подшипниковом щите генератора. Ротор генератора ГНВ — постоянный магнит, вращается вместе с ротором основного генератора; его магнитное поле пересекает двухфазную обмотку статора. После запуска приводного двигателя еще при низкой частоте вращения в обмотке ГНВ индуктируется достаточная э. д. с., которая выпрямляется выпрямителем Вп3 и поступает в обмотку возбуждения генератора. Таким образом обеспечивается надежное самовозбуждение.

На зажимах генератора появляется близкая к номинальной величина э. д. с. Теперь ток в обмотке ОН больше. Это обеспечивает большую э. д. с. обмотки ОС и на выходе выпрямителя Вп1. Например, на выходе выпрямителя Вп1 э. д. с. равна 60 В, а ГНВ развивает только 20 В, которые были вполне достаточны для самовозбуждения, а теперь более высокое напряжение от выпрямителя Вп2 запирает вентили выпрямителя Вп3 и ток от ГНВ на обмотку возбуждения генератора не поступает. Через нее проходит ток от выпрямителя Bп1 — ГНВ автоматически отключен.

Назначение трансформатора фазового компаундирования

Трансформатор фазового компаундирования состоит из двух первичных обмоток (см. рис. 1): токовой — ОТ, напряжения — ОН и одной вторичной — суммирующей ОС. На рис. 2 представлена векторная диаграмма м. д. с. трансформатора ТрФК, но нужно иметь в виду, что направление векторов м. д. с. совпадает с направлением векторов тока в соответствующих обмотках.

Векторная диаграмма компаундирования ТрФК системы МСС

Будем считать, что при номинальном напряжении генератора в суммирующей обмотке действует м. д. с. Fос. Ток в обмотке ОН (см. рис. 1 и 2), следовательно, вектор Fон, отстает от вектора напряжения на 90° из-за большой индуктивности обмотки ОН и наличия магнитного шунта в районе расположения обмотки напряжения. При изменении нагрузки по величине и характеру положение вектора Fон остается неизменным, так как ток нагрузки протекает только через обмотку ОТ. Положение вектора м. д. с. токовой обмотки Fот определяется определенным коэффициентом мощности cos ф. Ток в обмотке возбуждения генератора пропорционален величине вектора Fос.

Читайте также:  Тестирование блоков питания мощностью 500 700 Вт

При росте нагрузки по величине (Fот’) или при снижении cos ф (угол ф1) генератор уменьшает свое напряжение из-за действия размагничивающей реакции статора. Но трансформатор ТрФК осуществляет амплитудно-фазовое компаундирование; увеличиваются векторы м. д. с. в суммирующей обмотке (Fоc’, Fоc») и ток возбуждения генератора, напряжение генератора восстанавливается до нормальной величины.

Действие ТрФК при колебаниях нагрузки в сторону снижения по величине или увеличения cos ф будет направлено в сторону снижения тока возбуждения, так как в этих случаях напряжение генератора стремится увеличиться.

Корректор напряжения в системе возбуждения генератора — небольшой и отличается простотой. Он собран на базе дросселя, который в схеме (см. рис. 1) именуется дросселем отсоса ДрО. Корректор выполняет несколько функций.

Функции корректора напряжения в системе возбуждения

Предположим, что после колебаний нагрузки, несмотря на работу ТрФК, напряжение на шинах генератора не доведено до нормальной величины. Корректор напряжения должен в дополнение к действию ТрФК более точно воздействовать на ток возбуждения генератора с целью подрегулирования напряжения на шинах. ТрФК реагировал на первопричину изменения напряжения — изменение нагрузки, датчиком являлась обмотка ОТ. Корректор, осуществляя коррекцию по напряжению, реагирует на его величину.

Например, напряжение на шинах осталось несколько повышенным, увеличено оно и в точках 1, 2 обмотки ОН, откуда получает питание корректор. Следовательно, увеличен постоянный ток в обмотке управления ОУ, железо дросселя ДрО получает большее подмагничивание, рабочие обмотки переменного тока ОР из-за большего намагничивания железа уменьшают свое индуктивное сопротивление.

Электроэнергия, которая индуктируется в обмотке ОС ТрФК, расходуется на два канала. Первый канал: обмотка ОС, выпрямитель Вп1, обмотка возбуждения генератора. Второй канал: обмотка ОС, рабочие обмотки ОР дросселя ДрО. Так как индуктивное сопротивление обмоток ОР уменьшилось, то большая доля тока идет через них, а меньшая, индуктируемая обмоткой ОС, течет через выпрямитель Вп1 на возбуждение генератора. Генератор понижает свое напряжение до нормальной величины.

Если напряжение на шинах понижено, то ток в обмотке ОУ уменьшается, железо ДрО менее намагничено — это и есть причина увеличения индуктивного сопротивления обмоток ОР. Ток в них меньше, доля тока отсоса уменьшилась, больший ток течет через выпрямитель Вп1 на возбуждение генератора, его напряжение восстанавливается до нормы.

Через корректор напряжения осуществляется также коррекция по температуре. Например, при прогреве генератора сопротивление его обмоток возрастает, на них увеличивается падение напряжения, при неизменной э. д. с. генератора напряжение на шинах несколько понижено.

Однако вместе с генератором нагревается резистор термокомпенсации Rт, встроенный в генератор. В результате нагрева Rт его омическое сопротивление увеличивается, а так как оно включено последовательно с обмоткой ОУ, то в последней уменьшается ток. Железо дросселя ДрО менее насыщено, сопротивление обмоток ОР увеличивается, ток, идущий через них, уменьшается, большая часть тока течет через выпрямитель Bпl, возбуждение генератора и его э. д. с. увеличиваются, напряжение на шинах достигает заданной величины.

При параллельной работе генераторов нужно осуществлять равномерное автоматическое распределение реактивной нагрузки. Это осуществляется через корректор напряжения с помощью контура распределения реактивной нагрузки, в который входят трансформатор тока ТрТ и резистор контура Rк.

При одиночной работе генератора переключатель П замкнут и весь ток, индуктируемый во вторичной обмотке трансформатора ТрТ, замыкается через него, а не через резистор Rк. В этом случае контур не работает.

При параллельной работе генераторов переключатель П следует разомкнуть. Посмотрим, какое напряжение поступает на выпрямитель Вп2 (рис. 3). Прежде всего это часть линейного напряжения Uвс; именно на эти фазы включен корректор точками 1, 2 (см. рис. 1 и 3). Так как переключатель П разомкнут, то э. д. с., индуктируемая во вторичной обмотке трансформатора ТрТ, создает свой ток через резистор Rк корректора. Трансформатор ТрТ включен в фазу А, поэтому ток в его обмотках, а следовательно, и падение напряжения ΔU на резисторе Rк, создаваемое этим током, отстает на угол ф от фазного напряжения Ua, куда включен ТрТ.

Векторная диаграмма напряжений контура распределения реактивной нагрузки

Угол ф определяется какой-то величиной cos ф нагрузки на генератор, т. е. определяет долю реактивной нагрузки. Если вектор ΔU перенести в конец вектора Uвс и произвести их геометрическое суммирование, то получим вектор UВп2. Величина этого вектора определяет величину напряжения питания выпрямителя Вп2 и тока в обмотке ОУ.

Допустим, что доля индуктивной нагрузки на данный генератор увеличилась, это значит, что у этого генератора понизился cos ф (увеличился угол до значения ф1), вектор ΔU переместился в положение ΔU’.

Если его просуммировать с вектором Uвс, то получим больший по величине вектор U’Вп2, чем вектор UВп2. Это говорит о том, что напряжение питания выпрямителя Вп2 увеличилось, повысился ток в обмотке ОУ, сопротивление ОР понизилось, в них идет больший ток, снижается ток через выпрямитель Bпl на возбуждение. Генератор понижает э. д. с.

При рассмотрении параллельной работы генераторов было отмечено, что для уменьшения реактивной нагрузки на генератор нужно уменьшить его ток возбуждения — это было сделано регулятором автоматически. Вывод: данный генератор сбросит часть индуктивной нагрузки на параллельно работающий, так как у данного генератора э. д. с. стала ниже.

Прочие элементы схемы

К прочим элементам данной схемы можно отнести обмотку стабилизации ОС, уравнительное соединение УС и настроечные резисторы Rp, Ro, Ry.

Обмотка стабилизации ОС служит для успокоения работы системы регулирования. Контур распределения реактивной нагрузки не всегда справляется полностью со своей задачей, поэтому с помощью уравнительного соединения УС соединяются параллельно обмотки возбуждения обоих генераторов, работающих параллельно.

Теперь если один из регуляторов произведет регулирование тока возбуждения, то регулирование будет произведено в равной степени и для второго генератора. Этим обеспечивается стабильность реактивной нагрузки на генераторах, а не перераспределение ее в процессе регулирования. Система самовозбуждения и автоматического регулирования тока возбуждения генераторов типа МСС обеспечивает поддержание постоянства напряжения на шинах с заданной Правилами Регистра точностью 2,5%, в то время как большинство регуляторов работает с точностью 1 —16%. Это объясняется несовершенством корректора напряжения регулятора МСС.

Источник