Меню

Блок питания vac что это

Импульсные блоки питания – устройство и ремонт

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще – для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары – крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.

Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное – есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Читайте также:  Группы помещений предприятий общественного питания

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Не смогли починить БП? Обращайтесь в Комплэйс.

Устройство китайских зарядок для ноутбуков описано здесь.

Источник



Блок питания vac что это

042 Кое-что из электротехники для переводчиков

(01 2 ) Электрическое напряжение

Сегодня мы начнем знакомиться с электрическим напряжением

напряжение
voltage

Электрическое напряжение (в некоторых случаях говорят: «разность потенциалов») измеряется между двумя точками электрической цепи. Не бывает напряжения в одной точке. Вспомните аналогию с высотой, с которой вода поступает на водяное колесо, ведь высота – это расстояние между двумя точками.
Когда говорят, что напряжение сети в вашей квартире равно 220 В, то это означает, что если вставить измерительные щупы вольтметра в два гнезда розетки, то он покажет 220 В, т.е. измерение выполняют между двумя точками электрической цепи.
По значению (т. е. по числу вольт) напряжение классифицируется следующим образом:

  • подавать напряжение на .
  • прикладывать напряжение к .
  • снимать напряжение с .

. допускается подавать напряжение на цепь управления отключением .

Последовательно к лампе подсоединяют диод и на лампу подают напряжение, равное 110 % от номинального.

При испытании электрических цепей, питающихся от трансформаторов, на первичную обмотку подают напряжение, равное максимальному напряжению питающей сети, указанному в стандартах или технических условиях на электрооборудование.

. допускается подавать напряжение на цепь управления отключением .

К испытуемому образцу прикладывают напряжение переменного тока, равное 1,75 номинального напряжения, в течение 10 с

. после чего к изолятору прикладывают напряжение переменного тока промышленной частоты .

Для определения тока намагничивания к испытуемой вторичной обмотке при разомкнутой первичной обмотке прикладывают напряжение U частотой 50 Гц и измеряют протекающий по обмотке ток.

В процессе испытания электрической прочности изоляции напряжением, индуктированным в объекте испытаний, допускается при пробое изоляции снимать с него напряжение вручную.

В электроустановках обмывать гирлянды изоляторов, опорные изоляторы и фарфоровую изоляцию оборудования допускается, не снимая напряжения с токоведущих частей,

Вводное устройство должно отключать все питающие фазы и полностью снимать напряжение с электрических цепей, за исключением цепей .

  • high voltage
    HV
    Напряжение более 1000 В переменного тока и более 1500 В постоянного тока
  • среднее напряжение
    medium voltage
    MV
    Обычно напряжение от 1 до 35. 38 кВ
  • низкое напряжение
    low voltage
    low tension
    LV
    Не более 1000 В переменного тока и не более 1500 В постоянного тока
  • сверхнизкое напряжение
    extra-low voltage
    ELV
    Напряжение, не превышающее 50 В

Plugs & Sockets for extra low voltage
Вилки и розетки на сверхнизкое напряжение

Socket outlets for extra low voltage, surface mounting
Розетки на сверхнизкое напряжение, для монтажа на поверхности

  • безопасное сверхнизкое напряжение
    safety extra-low voltage
    SELV
    Напряжение, не превышающее 42 В
  • номинальное напряжение
    rated voltage
    Напряжение, установленное изготовителем для прибора, аппарата, …

В данном примере я хочу обратить ваше внимание на то, что английский термин » high-voltage» не всегда следует переводить как » высокое напряжение «.

Рассмотрим фрагмент исходного текста из Инструкции по монтажу программируемого логического контроллера (ПЛК) T racer MP581. Мы разберем перевод только трех предложений, но для контекста я привожу здесь немного больше текста.

Wiring high-voltage ac power
WARNING
HAZARDOUS VOLTAGE!
Before making electrical connections, lock open the supply-power disconnect switch. Failure to do so may cause death or serious injury.
CAUTION
USE COPPER CONDUCTORS ONLY!
Unit terminals are designed to accept copper conductors only. Other conductors may cause equipment damage.
To ensure proper operation of the Tracer MP581, install the power supply circuit in accordance with the following guidelines:
• High-voltage power-wire conduits or wire bundles must not contain input/output wires. Failure to comply may cause the controller to malfunction due to electrical noise.
• High-voltage wiring requires three-wire 120/230 Vac service.

1) Итак, разберем перевод заголовка

Wiring high-voltage ac power
Здесь:
wiring — электропроводка ;
high-voltage ac power — буквально — высоковольтный источник переменного тока

Казалось бы, данный заголовок следует перевести, например, так:

Подключение к высоковольтному источнику переменного тока

Но, как я сказал в самом начале мы рассматриваем фрагмент текста из Инструкции по монтажу ПЛК. Это означает, что ничего высоковольтного (т. е. более 1000 В) здесь быть не должно.
Перелистав Инструкцию, я нашел в ней технические характеристики ПЛК:

Поэтому в правильном переводе не должно быть упоминания о высоком напряжении:
Wiring high-voltage ac power
Подключение к питающей электрической сети

2) Привожу перевод еще двух предложений из рассматриваемого фрагмента текста, в которых пришлось убрать упоминание о высоком напряжении
High-voltage power-wire conduits or wire bundles must not contain input/output wires. Failure to comply may cause the controller to malfunction due to electrical noise.
Проводники цепей управления не следует прокладывать вместе с проводниками электропитания. В противном случае электрические помехи могут привести к нарушению нормальной работы контроллера
High-voltag e wiring requires three-wire 120/230 Vac service.
Питание 120/230 В переменного тока должно подаваться через 3-жильный кабель.

Читайте также:  Aerocool Cylon Mini mATX без БП RGB подсветка окно 1x USB 3 0 1x USB 2 0

В следующий раз мы поговорим о различных нарушениях в питающей сети переменного тока, относящихся к напряжению. Tags: справочник технического переводчика

Источник

Блоки питания и их характеристики. Как выбрать блок питания.

Блок питания в широком смысле — это электротехническое устройство, преобразующее электроэнергию сети переменного тока в электроэнергию с необходимыми параметрами (ток, напряжение, частота, форма напряжения), для питания других устройств, требующих эти параметры. То есть блок питания — это преобразователь.

Устройство.

В простейшем классическом варианте блок питания — это трансформатор, понижающий или повышающий переменное напряжение за счет электромагнитной индукции. Если требуется преобразование формы напряжения из переменного (AC) в постоянное (DC) — блок питания AC-DC, то используется выпрямитель напряжения. Также, в классическом блоке питания AC-DC присутствует фильтр пульсаций, создаваемых выпрямителем.


Трансформатор классического блока питания.

Классический вариант во многом оправдан благодаря своей простоте, надежности, доступности компонентов и отсутствию создаваемых радиопомех. Но из-за большого веса и габаритов, увеличивающихся пропорционально мощности, металлоемкости, а также низкого КПД при стабильном выходном напряжении, классические трансформаторные блоки питания уходят в прошлое. На смену им приходят импульсные блоки питания, о которых подробно и пойдет речь.

Импульсные блоки питания представляют собой инверторную систему, в которой входящее электричество сначала выпрямляется, после преобразуется в ток высокой частоты и определенной скважности с амплитудой прямоугольных импульсов, а потом происходит преобразование трансформатором и пропускание через фильтр низкой частоты. За счет повышения эффективности работы трансформатора с ростом частоты, снижаются требования к габаритам и металлоемкости по сравнению с классическими блоками питания.


Устройство импульсного блока питания.

Импульсные блоки питания получили широкое распространение благодаря ряду достоинств: значительно меньшие габариты и вес при сравнимой мощности; намного более высокий КПД (до 98%), благодаря устойчивости состояния ключевых элементов — потери возникают только при включении или выключении; меньшая стоимость — это стало возможным из-за повсеместного выпуска необходимых конструктивных элементов и разработке транзисторов повышенной мощности; сравнительная надежность; больший диапазон входных частот и напряжений — импульсный блок питания одинаково стабильно работает в диапазоне от 110 до 250 вольт и при частоте 50-60 Гц, что делает возможным использование техники с импульсными блоками питания повсеместно; безопасность при коротком замыкании.

Справедливости ради стоит сказать, что импульсные блоки питания не лишены минусов — сложность или невозможность ремонта, наличие высокочастотных радиопомех. Благодаря современным технологиям, эти минусы преодолимы, о чем свидетельствует широкое распространение, популярность и востребованность таких блоков на рынке.

Но, благодаря широкому распространению и большому разнообразию импульсных блоков питания в продаже, отличающихся функционально и характеристиками, иногда очень сложно подобрать необходимый. Попробуем разобраться в основных отличиях импульсных блоков, в их характеристиках и особенностях, а также ответим на вопрос: на что нужно обратить внимание, если вы хотите купить блок питания.

Особенности характеристик импульсных блоков питания.

В первую очередь, блоки питания делятся по функциональности преобразования. Одни блоки питания преобразуют электроэнергию таким образом, что на выходе получается стабилизированное напряжение при необходимой мощности — это AC-DC блоки питания. Другие преобразуют электроэнергию так, что на выходе получается стабилизированный ток постоянного значения в заданных диапазонах напряжения — это, так называемые, драйверы.

И те и другие блоки питания имеют определенную максимальную выходную мощность. Но, если в первом случае постоянным остается напряжение при возрастании тока в зависимости от мощности потребителей электроэнергии, то во втором случае постоянной остается сила тока, а в зависимости от мощности потребителей меняется напряжение на выходе. Диапазон изменения в драйверах ограничен, поэтому они распространены менее широко. Используются, в основном, в светотехнике, где заранее известны необходимые параметры тока.

Проще говоря, если вам нужен блок питания с необходимым током, например 700мА, при определенной мощности, то вам нужно выбирать драйвер. Если же вам нужен источник питания заданного напряжения и мощности, то нужен AC-DC блок питания.

При подборе блока питания важно учитывать его основные характеристики. С драйверами проще: все, что нужно о них знать, как правило, известно в рамках спецификации потребителя энергии. Встречаются драйверы в основном в составе готовых электротехнических изделий.

Чуть сложнее с AC-DC блоками питания. Современные блоки питания могут иметь различные характеристики выходного напряжения. Как правило, это: 5 вольт, 12 вольт, 24 вольта. Встречаются блоки питания и с другими выходными характеристиками: 3,3 вольта, 18 вольт, 32 вольта и прочие, но они менее распространены в отличие от первых, которые популярны в наружной и интерьерной рекламе и в декоративном освещении. Блоки питания необходимы, в большинстве случаев, для подключения светодиодных модулей, лент, линеек, для питания другой декоративной светотехники.

Читайте также:  Замена электромеханического замка в Москве и МО

В зависимости от количества потребляемой электроэнергии и мощности подключаемых потребителей выбирается мощность блока питания. Тут необходимо учитывать, что при включении и выключении характеристики блока нестабильны, а также то, что в процессе работы в ту или иную сторону могут меняться характеристики входного электричества, поэтому блок подбирается с запасом по мощности, который составляет 1,2 — 1,3 от мощности подключаемых потребителей. Перегрузка блока по мощности может вывести его из строя или приведет к неправильному функционированию.

Другим важным критерием выбора, когда вы собираетесь купить блок питания, является область его использования. Это также актуально для драйверов. Блок может использоваться внутри помещения или на улице. Во втором случае он может быть размещен на стене или на горизонтальной плоскости, в тени или на солнце, может подвергаться, атмосферному воздействию в виде осадков снега и прочего, либо может быть размещен под крышей или козырьком. Все это влияет на то, с какой степенью защиты IP и в каком корпусе выбрать блок питания.

Блок питания MeanWell в корпусе-сетке

Влагозащищенный блок питания в пластиковом корпусе

Источник

Диагностика неисправностей блока питания стандарта ATX с помощью мультиметра

Стандарт ATX имеет 2 версии — 1.X и 2.X, имеющие 20 и 24-пиновые коннекторы соответственною, вторая версия имеет 24-x 4 дополнительных пина, удлиняя тем самым стандартный коннектор на 2 секции таким образом:

Перейдем к диагностике:

Вам понадобится обычный мультиметр. Необходимы достаточно тонкие щупы, для того чтобы мы могли тыкнуть в провод с задней части коннектора.

Ничего из корпуса не вынимаем. Диагностику проводим с коннектором питания в материнской плате, и включенным блоком питания, подключенным к сети.

Прежде чем мы начнем, расскажу про “правила большого пальца” по отношению к неисправностям:
1) Проблемную материнскую плату легче заменить чем починить, это крайне сложная и многослойная схема, в которой разве что можно заменить пару конденсаторов, а обычно это проблемы не решает.
2) Если вы не уверены в том что вы делаете, то не делайте этого.

Если ваш мультиметр не имеет функции автоматической подстройки диапазона, то выставьте его на измерение десяток вольт постоянного напряжения. (Обычно обозначается 20 Vdc)

Поставим черный щуп на землю (GND-pin, COM, см. схему выше) — черный провод, к примеру контакты 15, 16, 17.

Концом красного щупа тыкаем в:

1) Пин 9 (Пурпурный, VSB) — должен иметь напряжение 5 вольт ± 5%. Это резервный интерфейс питания и он работает всегда, когда блок питания подключен к сети. Он используется для питания компонентов, которые должны работать, пока 5 основных каналов питания недоступны. К примеру — контроль питания, Wake on LAN, USB-устройства, контроль вскрытия и т.д.

Если напряжения нет или он меньше/больше, то это означает серьезные проблемы со схемой самого блока питания.

2) Пин 14 (Зеленый, PS_On) должен иметь напряжение в районе 3-5 вольт. Если напряжения нет, то отключите кнопку питания от материнской платы. Если напряжение поднимется, то виновата кнопка.

Все еще держим красный щуп на 14ом контакте…

3) Смотрим на мультиметр и нажимаем кнопку питания, напряжение должно упасть до 0, сигнализируя блоку питания о том, что надо врубать основные рельсы питания постоянного тока: +12VDC, +5VDC, +3.3VDC, -5VDC и -12 VDC. Если изменений нет, то проблема либо в процессоре/материнской плате, либо в кнопке питания. Для того чтобы проверить кнопку питания вытаскиваем ее коннектор из разъема на материнской плате и легонько закорачиваем пины легким прикосновением отвертки или джампером. Также можно попробовать аккуратно проводом закоротить PS_On на землю сзади. Eсли изменений нет, то скорее всего что-то случилось с метринской платой, процессором или его сокетом.

Если подозрения все-таки падают именно на процессор, то можно попытаться заменить процессор на известный исправный, но делать это на свой страх и риск, поскольку если убила его неисправная мать, то тоже самое может случиться и с этим.

0 В на PS_On… (Т.e. после нажатия на кнопку)

4) Проверяем Pin 8 (Серый, Power_OK) он должен иметь напряжение

3-5V, что будет означать что выходы +12V +5V и +3.3V находятся на примемлемом уровне и держат его достаточное время, что дает процессору сигнал стартовать. Если напряжение ниже 2.5V то ЦП не получает сигнала к старту.

В таком случае виноват блок питания.

5) Нажатие на Restart должно заставить напряжение на PWR_OK упасть до 0 и быстро подняться обратно.

Источник