Импульсные блоки питания – устройство и ремонт
Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.
Схема импульсного блока питания
Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.
Работа импульсного блока питания
Первичная цепь импульсного блока питания
Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.
На входе блока расположен предохранитель.
Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.
Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.
За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.
Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.
И еще – для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.
Работа вторичной цепи импульсного блока питания
Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.
Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.
Ремонт импульсных блоков питания
Неисправности импульсных блоков питания, ремонт
Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:
- Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
- Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
- Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
- Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
- Если не работает ШИМ регулятор, то меняем его.
- Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
- Неисправность оптопары – крайне редкий случай.
- Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
- Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.
Примеры ремонта импульсных блоков питания
Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.
Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.
Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.
На втором не работал ШИМ контроллер.
На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.
Ремонт компьютерных блоков питания
Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.
Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.
Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.
Цены на ремонт импульсных БП
Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.
Но самое важное – есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.
Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.
Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.
Не смогли починить БП? Обращайтесь в Комплэйс.
Устройство китайских зарядок для ноутбуков описано здесь.
Источник
Китайский блок. Препарируем.
Всё, что попадает в Интернет, становится достоянием вечности. Скопились дохлые блоки питания от коробочек для HDD, на ШИМе KA3842A.
P/N: FLY04002
MODEL: SPP34-12.0/5.0-2000
Полез искать схему — схемы нет.
Непорядок. Надо сделать так, чтобы схема была.
Теперь есть.
Кстати, очень полезный в хозяйстве блочок. Компактный, простой, с достаточной мощностью, с правильными напряжениями. И с возможностью лёгкого вмешательства в схему, чтобы их изменить.
- схемотехника,
- блок питания,
- китай,
- хрень
- +2
- 16 марта 2012, 14:56
- Gornist
Комментарии ( 48 )
Наконец-то прибавление в полку статей о силовухе =)
А блочки полезные, да.
Вроде негде та ошибаться:
Явно видно, что резисторы в параллель подключены. Там и вариантов других не существует. В смысле дорожек больше нет.
R8 — токовый датчик, местный контроллер — токовый ШИМ, требущий датчика тока ключа. Z1 — корректировочный к нему.
R11 — шунт СИДа оптопары, обеспечивает режим стабилитрона при закрытом светодиоде (TL431 не работает при токе через нее менее 1мА).
R12C12/R18C18 — снабберы, точно не помню что они делают. Вроде паразитный звон гасят.
R15C13 — не менее стандартная ОС для TL431 (хотя обычно стоит только C13 на 0.1мкФ), чтобы он не возбуждался.
В целом — довольно грамотно спроектированный блок питания, китайцы часто забивают на снабберы.
Источник
Все зарядные устройства
Posty shop — магазин оригинальных источников питания
Flypower SPP34-12.0/5.0-2000R — 3pin
Описание товара
Сетевое зарядное устройство адаптер блок питания Hewlett Packard (HP) 0957-2286.
Напряжение: 12V
Параметры тока: 2000mA
Напряжение: 5V
Параметры тока: 2000mA
Варианты маркировки:
Блок питания 12 Вольт 2000mA
Блок питания 12 Вольт 2000 миллиампер
Блок питания 12V 2000mA
Блок питания 12В 2000мА
Категории устройств
- В автомобиль
- К акустическому оборудованию
- К бритвам
- К видеокамерам
- К гироскутерам
- К зубным щеткам
- К игровым приставкам
- К инструменту
- К компьютерам и периферийным устройствам
- К медиапроигрывателям
- К медицинским приборам
- К мобильным телефонам
- К мониторам
- К ноутбукам
- К оргтехнике
- К осветительному оборудованию
- К планшетам
- К пылесосам
- К радионяням
- К радиоуправляемым моделям
- К рациям
- К роутерам и сетевому оборудованию
- К стационарным телефонам
- К торговому оборудованию
- К триммерам и машинкам для стрижки
- К фотоаппаратам
- К эпиляторам
- Разные сетевые адаптеры
Отправляем посылки в любой регион России в течение суток.
Источник
Power Supply
Эта работа участвует в нашем конкурсе статей.
Современные источники питания строят по схемам с импульсной передачей энергии, большие трансформаторы и линейные стабилизаторы с огромными радиаторами канули в лету.
Сетевой блок питания.
реклама
В сетевых БП наиболее распространены 2 типа конвертеров: HalfBridge — полумостовой преобразователь и FlyBack — обратноходовой преобразователь. У обоих типов есть свои достоинства и недостатки.
HalfBridge достаточно спокойно относится к завышенному входному напряжению и большому диапазону токов нагрузки, но даже малейшее снижение входного напряжения ниже минимального сразу сказывается на величине и стабильности выходных напряжений. Основная идея построения HalfBridge заключается в следующем: если соединить источник питания и нагрузку через ключ и периодически его замыкать, то усредненное напряжение на нем будет зависеть от соотношения времени замкнутого состояния ключа от его периода (скважность), умноженного на величину входного напряжения. Т.о., для стабилизации этого напряжения при изменении входного источника необходимо так менять скважность, чтобы произведение скважности на входное напряжение было постоянным. Но, если входное стало меньше необходимого выходного, никакой скважностью исправить не удастся, ведь скважность может меняться от 0 (ключ никогда не замыкается) до 1 (ключ замкнут всегда). В данной ситуации разумно предложить увеличение номинального входного напряжения, но тут вступает в силу другой фактор — ток нагрузки равен току из входного источника и приведенная мощность БП возрастет. Например, при полуторакратном запасе по напряжению необходимо сконструировать БП с полуторакратным превышением номинальной мощности, для чего применяются транзисторы на бОльший ток и трансформатор с бОльшей габаритной мощностью. Частично уменьшить этот вредный запас можно применением активного PFC, не путать с пассивным PFC.
FlyBack строится по другой топологии, в нем энергия накапливается в трансформаторе (вернее дросселе) и при закрывании ключа передается на выходные нагрузки. Качество трансформатора должно быть значительно лучше, чем в HalfBridge — из-за некоторой неидеальности связи первичной и вторичной обмоток существует так называемая индуктивность рассеивания. Это паразитный параметр и его величина чрезвычайно сильно сказывается на параметрах всего преобразователя. Из-за индуктивности рассеивания часть энергии выдается в виде высоковольтного импульса на первичной обмотке трансформатора, а следовательно, и на ключевом элементе. Величина этого выброса определяется индуктивностью рассеивания и энергией, накопленной в трансформаторе. Последнее пропорционально квадрату выходной мощности блока питания. Т.о., при повышении нагрузки на силовой ключ одновременно действуют два вредных фактора — увеличивается ток через ключ и напряжение на нем. С этим недостатком борются введением различных демпферных цепочек, но устранить его в топологии FlyBack невозможно. Существуют резонансные конверторы, которые компенсируют паразитную индуктивность в резонансный контур, что позволяет значительно повысить рабочую частоту преобразователя и общий КПД, но у них тоже есть свои ограничивающие факторы, поэтому и не распространены. Из перечисленного следует, что FlyBack очень спокойно относится к понижению входного напряжения, но не переносит даже кратковременного превышения выше критического — транзистор просто пробивается. Особенно неприятно соотношение предельной нагрузки и повышенного входного напряжения. Первое вызывает большой импульс напряжения из-за индуктивности рассеивания и при наложении на второе может вызвать пробой. Второй недостаток FlyBack — он плохо относится и к диапазону токов нагрузки. При маленьком токе нагрузки в трансформаторе сложно накопить столь малую энергию из-за относительно небольшой его индуктивности и сам конвертер может перейти в прерывистый режим работы, т.е. выходные напряжения будут иметь сильную пульсацию вплоть до дикого диапазона 0 — 200% и больше. Превышение тока нагрузки также вредно, ведь это вызывает повышение паразитного импульса напряжения на первичной стороне.
Внешним проявлением примененного типа конвертера может служить диапазон входных напряжений. Если указано 90-24 или «autoswitch» — это FlyBack, для HalfBridge такой диапазон невозможен и для него или ставят переключатель 110-220 или ограничивают рамками 180-250V. Как следует из особенностей, HalfBridge очень чувствителен к качеству питающего напряжения, особенно его провалам, и емкости конденсатора входного выпрямителя сети 220V. При отсутствии активного PFC, его емкость должна быть не меньше выходной мощности БП, рекомендуемое значение — в 2 раза больше. Например, для мощности нагрузки в 150W его номинал должен быть ни в коем случае не меньше 150uF, а лучше — 330uF. Если установлена меньшая емкость, то возникнут 2 деструктивных момента из-за очень значительного напряжения пульсаций на нем:
- ухудшается (возрастает) минимальное рабочее напряжение сети
- увеличивается нагрев самого конденсатора.
Источник