Меню

Компенсационные стабилизаторы напряжения

Компенсационные стабилизаторы напряжения

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки — КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.

Рис. 26.10. — КСН последовательного типа

РЭ — это регулирующий элемент, в качестве которого чаще всего используется транзистор (биполярный или полевой), СУ — схема управления — собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача — усилить сигнал рассогласования и подать его на РЭ. Д — делитель напряжения, ИОН — источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется — последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 26.11.

Рис.26.11. — КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резисторе. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство — при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 26.12.

Рис.26.12. — Принципиальная схема КСН.

Итак, разберем все детали. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резисторов R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная.

На практике один из вариантов такой схемы можно встретить с резистором между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резистор, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Итак, практическая схема вышеописанного стабилизатора приведена ниже:

Эта схема блока питания и, как видно, отличие состоит лишь в конденсаторах и резисторе R1. Резистороом R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резистора R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резистор R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см 2 .

Одной из разновидностей схем такого рода является так называемая схема с «холодным» коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не «горячего». А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 26.12 и 26.13. В этих схемах транзисторы сгорят, если забыли изолировать коллектор .

Рис. 26.14 — КСН с «холодным» коллектором

Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя — КТ815 и КТ819. Недостаток схемы — меньший ток нагрузки, нежели у схемы на рисунке 26.13. Да к тому же для такого стабилизатора необходим отдельный выпрямитель Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.

Другие схемы не только по этой теме будут постепенно накапливаться в отдельном разделе; назовем его «каталог схем».

Рассмотрим несколько схем с применением интегральных стабилизаторов. На рис. ниже показаны типовые схемы включения стабилизаторов.

Рис. 26.15. — Типовая схема включения КР142ЕН5

Рис. 26.16. — Типовая схема включения КР142ЕН12

На рисунке 26.15 показана схема с фиксированным выходным напряжением, на рис. 26.16 — с регулируемым. Конденсаторы С1, С2 включены для повышения устойчивости стабилизаторов (0,33 мкФ÷1 мкФ).

Для стабилизатора по схеме на рис. 26.15 (с фиксированным выходным напряжением) имеется возможность увеличения в некоторых пределах выходного напряжения (но не более, чем до Uвх — 10%). Для этого в схему вводится стабилитрон, как показано на рис. ниже:

Рис. 26.17 — Увеличение выходного напряжения

Выходное напряжение повышается на величину напряжения стабилизации стабилитрона Uст. Можно также примерно подобное сотворить со схемой на рис. 26.16, но это крайне нежелательно, т.к. через резистор R2 будет течь ток Iпот, потребляемый цепями управления стабилизатора, который зависит от тока нагрузки. Это приведет к увеличению выходного сопротивления стабилизатора. Выходное напряжение стабилизатора в этом случае определяется по формуле:

Для увеличения выходного тока, а, следовательно, мощности в схему стабилизатора втыкают транзистор, примерно так, как показано на рисунке 26.18

Рис. 26.18 — Увеличение мощности стабилизатора

Вместе с внутренним выходным транзистором интегрального стабилизатора транзистор VT1 образует комплементарный составной транзистор. Недостаток такого способа состоит в том, что схема ограничения тока и цепь защиты выходного транзистора стабилизатора фактически не используется. Некоторые фирмы выпускают микросхемы, содержащие, по существу, только цепи управления стабилизатором напряжения и предназначенные для подключения к мощному транзистору по схеме, сходной с приведенной на рис. 26.19. Так, например, фирма Maxim Integrated Products производит ИМС типа МАХ687, к которой подключается pnp-транзистор с малым напряжением насыщения коллектор-эмиттер. При фиксированном выходном напряжении 3,3 В этот стабилизатор допускает при токе нагрузки 1А минимальную разность входного и выходного напряжений 0,14 В. Фирма Analog Devices выпускает в миниатюрном корпусе SO-8 микросхему регулятора ADP3310, которая совместно с мощным полевым транзистором способна отдать в нагрузку ток до 10 А. Минимальная разность напряжений вход-выход составляет в этом случае порядка 0,5 В (существенно зависит от параметров регулирующего МОП-транзистора). Для токовой защиты включается внешний резистор.

Читайте также:  Сколько нужно ватт блок питания

Для стабилизации тока можно применить следующую схему:

Рис. 26.19 — Схема стабилизации тока

Сопротивление резистора R1 определяется по формуле:

На резисторе R1 падает напряжение, равное номинальному выходному напряжению стабилизатора. Это составляет для КР142ЕН5 около 5 В, что приводит к большим потерям энергии в резисторе. Поэтому в такой схеме целесообразно использовать ИМС регулируемого стабилизатора, например, КР142ЕН12, у которого, при указанной схеме включения, это напряжение составит 1,2 В.

Номенклатура двухполярных стабилизаторов напряжения сравнительно бедна, поэтому для построения стабилизатора с выходным напряжением, например, ±5 В можно использовать схему, приведенную на рис. 26.20. Поскольку потенциал неинвертирующего входа ОУ (DA2) нулевой, то и потенциал инвертирующего входа этого усилителя также должен быть равен нулю. При работе ОУ DA2 в линейном режиме и равенстве сопротивлений резисторов в делителе это может быть только в случае равенства по абсолютной величине разнополярных напряжений на выходе схемы. В простейшем случае, если ток выхода отрицательной полярности не превосходит допустимого выходного тока ОУ DA2, транзистор VT1 может быть исключен из схемы, а выход ОУ DA2 должен быть непосредственно соединен с отрицательным выходом стабилизатора.

Источник



Компенсационные стабилизаторы

Компенсационные стабилизаторы напряжения позволяют получить постоянное напряжение с минимальным значением пульсаций и шума, поэтому эти стабилизаторы применяются в узлах радиоаппаратуры, наиболее чувствительных к помехам. Более того! Если раньше в радиоэлектронном устройстве применялся один источник стабильного напряжения, а потребители разделялись пассивными RC фильтрами, то теперь экономически выгоднее вместо фильтрующих RC-цепочек поставить интегральные стабилизаторы напряжения.

Следует отметить, что при написании этой статьи я решал непростую дилемму. С одной стороны в настоящее время на рынке предлагается огромное количество готовых микросхем стабилизаторов напряжения. С другой стороны для правильного выбора и применения этих микросхем нужно понимать как они работают. Именно поэтому сначала познакомимся с принципами работы компенсационного стабилизатора, а только потом рассмотрим особенности применения готовых микросхем. Структурная схема компенсационного стабилизатора приведена на рисунке 1.

Рисунок 1. Структурная схема компенсационного стабилизатора напряжения

Стабилизация выходного напряжения в компенсационном стабилизаторе происходит при помощи отрицательной обратной связи. Выходное напряжение может измениться под влиянием входного напряжения или изменения тока нагрузки. Оно сравнивается с опорным высокостабильным напряжением и при несовпадении осуществляется его подстройка под заданное значение.

В процессе работы компенсационного стабилизатора транзистор, который применяется в качестве регулировочного элемента, изменяет свое внутреннее сопротивление. На этом сопротивлении по закону Ома осуществляется падение напряжения ΔUРЭ. При этом напряжение падает ровно настолько, чтобы на выходе получилось требуемое напряжение питания. Это означает, что при применении компенсационного стабилизатора входное напряжение всегда должно быть больше выходного.

В схеме, приведенной на рисунке 1, коэффициент передачи элемента регулирования Kр определяет зависимость выходного напряжения от входного. Для хорошего стабилизатора чем меньше будет этот коэффициент, тем лучше. Пульсации входного напряжения не смогут пройти на выход стабилизатора. Поэтому в элементе регулировки обычно входное напряжение подается на коллектор биполярного транзистора или сток полевого транзистора. Эталонное напряжение Uэт обычно не совпадает с выходным напряжением стабилизатора, поэтому между его выходом и схемой сравнения ставится делитель напряжения с коэффициентом деления Kд. Для получения необходимого коэффициента стабилизации между устройством сравнения и регулирующим транзистором ставится усилитель постоянного тока, который усиливает сигнал ошибки ΔUE. Общий коэффициент петлевого усиления в данной схеме можно определить следующим образом:

Принцип работы компенсационного стабилизатора лучше пояснить по принципиальной схеме. Подобная схема, выполненная на двух транзисторах, приведена на рисунке 2.

Рисунок 2. Принципиальная схема простейшего компенсационного стабилизатора напряжения

В этой схеме в качестве регулирующего элемента использован транзистор VT1, включенный по схеме с общим коллектором. Схема сравнения реализована на транзисторе VT2. Ток этого транзистора зависит от разности напряжений между базой и эмиттером. В качестве эталонного источника напряжения применен параметрический стабилизатор на резисторе R1 и стабилитроне VD1. Выходное напряжение поступает на базу транзистора VT2 через делитель напряжения R3, R4.

Если напряжение на выходе стабилизатора по каким либо причинам возросло, то транзистор VT2 приоткрывается и напряжение на его коллекторе уменьшается. К коллектору VT2 подключена база транзистора VT1, следовательно, уменьшится и напряжение на выходе стабилизатора (вернется к заданному значению). Аналогичным образом схема отрицательной обратной связи отработает и при уменьшении напряжения на выходе.

Следует заметить, что от транзистора VT1 требуется обеспечивать большой коэффициент усиления по току, поэтому в современных стабилизаторах, таких как иностранные микросхемы 7805 или КР142ЕН5 отечественного производства, в качестве этого транзистора применяется составной транзистор по схеме Дарлингтона.

Рисунок 3. Схема Дарлингтона

Коэффициент усиления усилителя, собранного на транзисторе VT2, сильно зависит от сопротивления R2. Чем больше будет это сопротивление, тем больше Kу, и, следовательно, коэффициент стабилизации. Кроме того, через это сопротивление на базу транзистора VT1 поступают пульсации входного напряжения Uвх. С этой точки зрения тоже следует увеличивать сопротивление резистора R2. Однако в результате может не хватить тока для работы транзисторов VT1 и VT2. Поэтому в современных стабилизаторах вместо обычного резистора применяются генераторы тока. Чаще всего токовое зеркало.


Рисунок 4. Принципиальная схема токового зеркала

В результате получается схема, подобная схеме стабилизатора с фиксированным выходным напряжением 7805. Конечно, существуют микросхемы стабилизаторов с регулируемым выходным напряжением, однако подобная функция приводит к усложнению схемы и снижению параметров стабилизатора, поэтому выгоднее подобрать готовый стабилизатор на необходимое напряжение.

Рисунок 5. Принципиальная схема компенсационного стабилизатора 7805

Несмотря на достаточно сложную внутреннюю схему, применять такой стабилизатор чрезвычайно просто. Его схема включения приведена на рисунке 6

Рисунок 6. Принципиальная схема стабилизатора, реализованного на микросхеме 7805

Микросхемы, выполненные по этой схеме выпускаются большинством ведущих фирм мира. В качестве примера можно назвать LM7805 фирм Texas Instruments, STMicroelectronics, Fairchild Semiconductor, способную выдавать выходной ток более 1,5 А. Имеется отечественный аналог — стабилизаторы КР142ЕН5В. В названии приведенной микросхемы стабилизатора цифры 78 означают, что это стабилизатор, а цифры 05 означают, что он формирует на выходе напряжение 5 В. Соответственно стабилизаторы 7803 будут формировать напряжение 3.3 В, микросхема 7809 сформирует на выходе напряжение 9В, микросхема 7812 обеспечит напряжение 12В.

Так как через силовой транзистор (элемент регулировки) протекает весь ток нагрузки, то на нем выделяется тепловая энергия, которую необходимо рассеять в окружающем пространстве. Поэтому обычно этот стабилизатор размещается на радиаторе. Для удобства крепления микросхема выполняется в специально разработанном корпусе TO-220, который даже без радиатора способен рассеять до 1 Вт тепла.

Читайте также:  Адаптеры для зарядки IPad в Екатеринбурге


Рисунок 7. Примеры компенсационных стабилизаторов, выполненных на микросхеме 7805

В ряде случаев такой большой ток не требуется, поэтому были разработаны микросхемы маломощных стабилизаторов напряжения. Наиболее распространены микросхемы LM78L05. Эти микросхемы выпускаются в малогабаритных корпусах, таких как SOIC, SOT-89, DSBGA или TO-92. Отечественные малогабаритные стабилизаторы — КР1157. Их схема включения не отличается от схемы, приведенной на рисунке 6, но конструкция совершенно другая.


Рисунок 8. Примеры компенсационных стабилизаторов, выполненных на микросхеме 78L05

Как видно из приведенных примеров, компенсационные стабилизаторы нашли широкое применение в современных компьютерах, сотовых телефонах и рациях.

Дата последнего обновления файла 21.05.2019

Понравился материал? Поделись с друзьями!

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения (meanders.ru)
  6. LDO-преобразователи с низким током собственного потребления и малым падением напряжения (compel.ru)
  7. Одноканальные LDO-стабилизаторы малой мощности компании Texas Instruments (rlocman.ru)
  8. 3 Pin 1.5A Fixed 5V Positive Voltage Regulator (ti.com)
  9. 1A LOW DROPOUT POSITIVE FIXED 2.5V REGULATOR (gaw.ru)

Вместе со статьей «Компенсационные стабилизаторы» читают:

Источник

Схемы простых стабилизаторов напряжения

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Схема стабилизатора напряжения

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

Схема стабилизатора напряжения

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Схема стабилизатора напряжения

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

Схема стабилизатора напряжения

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

Схема стабилизатора напряжения

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

Схема стабилизатора напряжения

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

Схема стабилизатора напряжения

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Схема стабилизатора напряжения

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

Схема стабилизатора напряжения

На 1-м рисунке схема на транзисторе 2SC1061.

Схема стабилизатора напряжения

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10
Читайте также:  Напряжения компьютерного блока питания atx

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

Источник

Стабилизаторы напряжения в блоках питания

Стабилизаторы напряжения в блоках питания при конструировании стабилизированных блоков питания различной аппаратуры, как правило, используют микросхемы стабилизаторов напряжения. Большая номенклатура таких микросхем предоставляет конструкторам широкую возможность их выбора для создания стабилизатора с требуемыми параметрами. В некоторых случаях, однако, для построения относительно мощных стабилизаторов вполне применимы маломощные микросхемы. Примером в этом отношении может служить построение стабилизатора напряжения, встраиваемого в сетевой адаптер.

В большинстве случаев, как известно, такие адаптеры, особенно импортные, обеспечивают выходной ток до 0,5 А и не содержат стабилизатора напряжения. Если для повышения “качества” выпрямленного напряжения необходим стабилизатор, можно использовать микросхемы ИМС. Из-за доступности микросхем серии КР142. Для получения выходного напряжения 9В обычно выбирают КР142ЕН8А, КР142ЕН8Г. Однако они обеспечивают ток нагрузки до 1 …1,5А при еще большем токе короткого замыкания (КЗ). Из-за этого при возникновении аварийной ситуации могут выйти из строя трансформатор и выпрямительные диоды адаптера. Чтобы избежать этого, нужен стабилизатор с током нагрузки до 0,5 А и током КЗ не более 0,6 А. Но найти микросхемы с такими параметрами и с выходным напряжением 9 В затруднительно.

Стабилизаторы напряжения в блоках питания выход из положения есть. Нужно использовать маломощную микросхему и “умощнить” ее с помощью транзистора (на рисунке выше в статье). В таком устройстве при токе нагрузки более 20 мА падения напряжения на резисторе R1 окажется достаточно для открывания транзистора VT1. Ток потечет “в обход” DA1, выходное напряжение будет определяться ее параметрами, а ток нагрузки может превысить допустимый выходной ток микросхемы во много раз. Правда, ток КЗ достигнет 1…1.5А, что чревато вышеуказанными последствиями.

Ограничить ток КЗ нетрудно введением еще одного транзистора (VT2 на рисунке).

Тогда при токе нагрузки до 20 мА по-прежнему будет работать только DA1, а транзисторы окажутся закрытыми. Когда ток превысит указанное значение, откроется транзистор VT1 и ток потечет через него. Как только ток достигнет значения 400…500 мА либо в цепи нагрузки возникнет КЗ, на резисторе R1 появится такое напряжение, которое откроет транзистор VT2. Теперь оба транзистора начнут работать в режиме стабилизатора тока.

Резистором R1 задают ориентировочное значение тока стабилизации: lCT = 0,6/R1. При этом ток КЗ составит: lK3 = lCT + 1КЗ.МС, где кз.мс ток КЗ микросхемы. В обоих устройствах транзисторы VT1 — любые из серий КТ814, КТ816. Транзистор VT2 должен быть с малым напряжением насыщения коллектор—эмиттер, поэтому желательно применить, кроме указанного на схеме, транзисторы КТ208А—КТ208М, КТ209А—КТ209М, КТ3107А-КТ3107И, КТ3108А— КТ3108В. Конденсатор С1 — конденсатор фильтра адаптера.

Источник

Компенсационные стабилизаторы напряжения

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки — КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.

Рис. 3 — КСН последовательного типа

РЭ — это регулирующий элемент, в качестве которого чаще всего используется транзистор ( биполярный или полевой), СУ — схема управления — собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача — усилить сигнал рассогласования и подать его на РЭ. Д — делитель напряжения, ИОН — источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется — последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Короче, если, к примеру, напряжение на входе скакнуло, эта фигня, естественно, передается на выход. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их. При рассмотрении принципиальной схемы все станет ясней.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 4.

Рис.4 — КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резике. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство — при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 5.

Рис.5 — Принципиальная схема КСН.

Итак, разберем все деталюшки. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резиков R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная. Но работает!

На практике один из вариантов такой схемы можно встретить с резиком между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резик, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Источник