Меню

Корпус блока питания под напряжением

Как устроен компьютерный блок питания и как его запустить без компьютера

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Содержание статьи

Как устроен компьютерный блок питания и как его запустить без компьютера

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Устройство компьютерного блока питания

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Все узлы бока питания

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

Упрощенная структурная схема ИБП

А вот схема электрическая принципиальная, разбитая на блоки.

Принципиальная схема компьютерного блока питания

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Блок питания без входного дросселя

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Однотактный и двухтактный преобразователь

Типовая схема с ШИМ-контроллером выглядит примерно так:

Схема с ШИМ-контроллером

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Часть принципиальной схемы БП

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Часть принципиальной схемы БП

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Часть принципиальной схемы БП

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Быстродействующие диоды с малым падением напряжения

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Дополнительные функции БП

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Активный корректор коэффициента мощности

Схема корректора

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Распиновки разьемов БП

Разьемы блоков питания

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

Характеристики блока питания

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Использование блока питания без компьютера

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Читайте также:  Блоки питания для ноутбуков горят

Установка кнопки или тумблера

Кнопка управления

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Схема блока питания

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3.3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Источник

Корпус блока питания под напряжением

Сам не отношу себе к знатокам импульсных блоков питания просто напишу о наболевшем, что бросается в глаза даже дилетанту. На днях начал переделывать очередной компьютерный блок питания для нужд паяльной станции Ну и вообщем взгляд на внутренности данных блоков напомнили о их проблемах.

Итак самый тяжелый случай блоки питания которыми комплектуются не дорогие корпуса.

Для переделки были разобраны очередные неисправные блоки питания, мощность была указана в 450 Вт.

Синдром у обоих был похожий при старте срабатывала зашита.

Что же мы видим внутри, блок построен на 3845.

Ну явно начинка не тянет на 450Вт диоды стоят 10А т.е. по выпрямителю суммарная мощность менее 200Вт дроссель совсем хилый.

Неисправность в этом блоке заключалась в выходе из строя оптопары отвечающей за стабилизацию напряжения.

А вот второй блок похоже пытались эксплуатировать в более приличном компьютере.

Вздулись конденсаторы фильтров и обратите внимание на цвет изоляции провода дросселя в районе контактов и на самом дросселе, это один провод.

Заменой вздувшихся конденсаторов его уже не вылечишь, дроссель на выброс, а сам блок в качестве донора.

Кстати вот фотки рабочего блока из корпуса Assus мощность 450Вт аналогичная предыдущим схема техника.

Внутри все смотрится несколько лучше.

Диодные сборки или установлены более мощные или включены по две. Дроссель также намного массивней.

Диодные сборки конечно сложно рассмотреть не вскрывая блок но дроссель зачастую довольно хорошо просматривается.

Теперь вторая проблема

А что же с более фирменными блоками.Например вот блоки FSP, лежит целая стопка не исправных. Внутри все выглядит вполне достойно.

У всех блоков АТХ есть ахиллесова пята вне зависимости от мощности. Это источник дежурного напряжения +5VSB.

Вроде что такого, но от этого источника помимо всякой ерунды на материнке (которая не так много потребляет) питаются все порты USB.

У него указан максимальный ток 2А на некоторых блоках 2.5А, но такой ток можно снять только при принудительном обдуве (и желательно не горячим воздухом).

Сейчас же к USB подключена куча устройств, и некоторые с большим потреблением винчестеры 0.5А, телефон или планшет если фирменный ограничит свой аппетит 0.5А, а китай может и 1А потребовать.

(Кстати довольно полезный девайс: USB-тестер. Позволяет определить как потребляемый ток так и отбраковать плохие зарядки выдающие повышенное напряжение. Обзор на Паяльник TV)

Представим ситуацию когда у вас закончился ожесточенный бой, вы выключаете компьютер. К USB прицеплены винчестеры телефон и.т.д..

Обдув блока и корпуса прекратился и горячий воздух от раскаленных процессора и видеокарты начинает подниматься вверх. В итоге температура в блоке нарастает и источник дежурки вынужден работать с перегревом. И вполне может и спечься, при следующем включении компа можно этого включения и не получиться.

Самое странное что зачастую он не сгорает но начинает выдавать явно не пять вольт.

В приведенных выше блоках источник дежурного питания FSP дополнительно расположен между радиаторами, что возможно усугубило ситуацию. В общем все они выдают по +5VSB явно не пять вольт, хотя светодиодики на материнке гореть будут.

Сейчас я стараюсь не обвешивать комп по USB как новогоднюю елку и стараюсь не использовать его в выключенном состоянии как зарядку для всех гаджетов.

Ну и пара отступлений.

1. Теперь немного о ремонте.

А точнее самый легко устранимая поломка.

И так блок вообще не работает т.е. нет напряжения даже на дежурке.

Зачастую это выбило предохранитель по скачку напряжения. Проверяется прозвонкой предохранителя.

Но помимо предохранителя необходимо обязательно прозвонить и варисторы. Их может быть до трех штук, один по переменке и два шунтируют конденсаторы.

При прозвонке их сопротивление должно стремится к бесконечности, иначе их надо заменить. (В без выходной ситуации, на свой страх и риск, их можно и просто выпаять. Но после этого блок питания не будет защищен от скачков напряжения и может сгореть сам и унести с собой в могилу материнку с чем ни будь еще.)

2. Вредный совет при переделке компьютерного БП АТХ в лабораторный.

Встречал несколько раз рекомендацию для увеличения тока снимаемого с 12в канала в старых блоках, заменять диодную сборку и ставить ее из 5в канала. Казалось бы диодная сборка 5в канала имеет максимальное напряжение 40-45в, что почти в двое больше напряжения холостого хода 12в канала. Но импульсные напряжения могут превышать (особенно в моменты регулировки напряжения или изменения режима работы) это напряжение, хотя зачастую блок питания может работать при этом продолжительное время. Выбивание диода зачастую приводит к сгоранию и высоковольтного транзистора. (Родные диоды в 12в канале как правило на 100в и если бы можно было сэкономить то китайцы точно бы это сделали до нас)

darkly Опубликована: 15.11.2015 0 2
Вознаградить Я собрал 0 1

Источник



Как проверить БП компьютера на работоспособность — самая суть

Всем привет. Недавно вызвал меня клиент с проблемой: компьютер совсем не включается. Я сразу понимаю, что проблема может быть в блоке питания. Поэтому обязательно с собой беру тестер и новый блок питания для замены.

Читайте также:  Antec TruePower 750W TP 750 Blue в городе Екатеринбург

Но бывают случаи, что компьютер включается, но не стабильно работает: то резко выключается, то перезагружается. Как быть в этом случае?

В этой статье я расскажу: как проверить блок питания компьютера мультиметром, тестером и специальной программой под нагрузкой.

Признаки неисправности блок питания компьютера

Признаки неисправности, которые точно указывают, что блок питания неисправен:

  1. Не запускается компьютер при нажатии на кнопку включения на системном блоке.
  2. Во время работы компьютер самопроизвольно перезагружается.
  3. При включении компьютер включается не с первого раза.
  4. Резко выключается, как будто свет выключили. И пока переключатель сзади не выключишь — включишь, или кабель не отсоединить и подключить обратно, компьютер с кнопки не включится.

Косвенные признаки неисправности БП:

  1. Пропадает в системе жесткий диск.
  2. Периодически вылетает синий экран с BSOD ошибками.

Еще часто бывает, что при включении компьютера гудит вентилятор в течении 10-20 минут, а потом гул затихает и прекращается. Это гудит вентилятор блок питания. Вентилятор БП в таком случае нужно смазать. Иначе вентилятор со временем заклинит, блок питания будет перегреваться и скоро выйдет из строя.

Если на своем ПК вы наблюдаете какой-то из вышеперечисленных симптомов, то это указывает на неисправность блока питания.

Способ 1. Проверка блок питания на работоспособность

Теперь давайте проверим рабочий ли блок питания. Для этого воспользуемся скрепкой в качестве перемычки.

24 pin коннектор

  1. Отключаем компьютер от сети 220В.
  2. Отсоединяем все провода блока питания, подключенные к материнской плате, жесткому диску и т.д.
  3. Замыкаем скрепкой зеленый провод с любым черным на 24 pin коннекторе, как показано на фото ниже.

Замыкаем зеленый и черный провод в коннекторе

Подключаем кабель питания, если вентилятор в БП не закрутился, то значит блок питания не исправный. Чтобы убедиться в этом точно, возьмите крестовую отвертку, отверните 4 болта и снимите крышку на блоке.

Проверьте вращение вентилятора — он должен крутится легко. Если крутится с трудом, то его нужно смазать.

Вентилятор блок питания

Проверяем вентилятор в блоке питания

Почистите БП питания от пыли и осмотрите на наличие вздутых конденсаторов. Вздутые конденсаторы нужно заменить.

Вздутые конденсаторы

Вздутые конденсаторы в блоке питания

Если у вас возникли проблемы с компьютером, то можете обратиться ко мне за консультацией — вступайте в группу ВК.

Обложка группы VK

Помогу решить проблему с ПК или ноутбуком. Вступайте в группу VК — ruslankomp

Если вентилятор в блоке питания закрутился при подключении кабеля, то значит БП рабочий. Но чтобы проверить исправен ли он, нужно замерить показатели мультиметром.

Способ 2. Проверка БП мультиметром

Для проверки мультиметром понадобятся достаточно тонкие щупы, для того чтобы мы могли достать контакт в проводе с задней части коннектора.

Ничего из корпуса не вынимаем. Диагностику проводим с коннектором питания в материнской плате и подключенным к сети блоком питания.

Смотрим схему коннектора и сверяем с замерами на мультиметре.

Схема 24-pin коннектора

Схема 24-pin коннектора БП

  1. Черный – земля (он же минус или масса);
  2. Желтый – 12V, допускаются отклонения +-5% от 11.4-12.6 Вольта;
  3. Красный — +5V, допуск 4.75-5.25 Вольта;
  4. Фиолетовый (дежурное напряжение) – 5V, отклонения по норме 4.75-5.25В;
  5. Оранжевый — 3.3V, допускаются пределы 3.14-3.47В;
  6. Синий – это -12V, допуск +-10% напряжение может быть от -10.8В до -13.2В.

Включаем мультиметр в режиме постоянного напряжения в диапазоне 20 вольт. Ставим черный щуп в любой черный провод на большом коннекторе.

Шаг 1. Проверка напряжения фиолетового провода (дежурки)

Концом красного щупа на мультиметре прозваниваем PIN 9 (Фиолетовый, +5VSB) — должен иметь напряжение 5 вольт ± 5% в пределах нормы 4.75-5.25 Вольта.

Это резервный интерфейс питания и он работает всегда, когда блок питания подключен к сети. Если напряжения нет или он меньше/больше нормы, то это означает серьезные проблемы со схемой самого блока питания.

На моем блоке питания дежурка в норме = 5.1 вольта.

Замер дежурки БП

Замер дежурной +5V линии (фиолетовый провод) и любой черный

Шаг 2. Проверка напряжения зеленого провода

Далее звоним PIN 16 (Зеленый, PS_On). Он должен иметь напряжение в районе 3-5 вольт. Если напряжения нет, то отключите кнопку питания от материнской платы. Если напряжение поднимется, то виновата кнопка.

Замер зеленого провода БП

Компьютер выключен — напряжение на зеленом проводе 3.5 вольта

Все еще держим щупы на черном и зеленом проводе и включаем компьютер с кнопки. Напряжение на мультиметре должно упасть до 0.

Замер зеленого провода на включенном компьютере

Компьютер включен — напряжение на зеленом проводе упало до 0

Если изменений нет, то проблема в материнской плате, процессоре или кнопке включения на корпусе компьютера.

Чтобы проверить кнопку включения, отсоединяем ее коннектор из разъема на материнской плате и закорачиваем 2 штырька на материнке прикосновением отвертки.

Шаг 3. Проверка напряжения серого провода (Power_OK)

На включенном компьютере проверяем PIN 8 серый провод, он должен иметь напряжение 3-5 вольт. Это означает что выходы на линиях +12V +5V и +3.3V в пределах допустимого напряжение и держат его достаточное время, что дает процессору сигнал стартовать.

Напряжение на сером проводе БП

После вкл компьютера — напряжение на сером проводе 4.84 вольта

Шаг 4. Проверка напряжения на желтом проводе

  1. Один щуп ставим на черный провод.
  2. Второй щуп ставим на желтый провод.

У меня получилось 12,26 вольт, что входит в допустимое значение от 11.4 до 12.6 Вольта.

Замер мультиметром линии 12V

Замер +12V линии (желтый провод) на блоке питания компьютера

Шаг 5. Проверка напряжения на красном проводе

Точно также замеряем красный провод, должно быть в пределах 4.75-5.25 Вольта. Показывает в норме 5,06 V.

Замер линии 5V

Замер +5V линии (красный провод) на блоке питания компьютера

Шаг 6. Проверка напряжения на оранжевом проводе

Замеряем оранжевый провод, он используется для подачи питания на платы расширения, также присутствует на коннекторе SATA для подключения жестких дисков. У меня показывает мультиметр 3.34В, что в пределах допустимого значения 3.14-3.47В.

Замер линии +3.3V

Замер +3,3V линии (оранжевый провод) на блоке питания компьютера

Шаг 7. Тест блок питания на пробой

  1. Отключаем компьютер.
  2. Ждем 1 минуту, чтобы остаточный ток ушел.
  3. Ставим мультиметр в режим измерения сопротивления Ω 200 или 2000 Ом .
  4. Вынимаем большой коннектор из материнской платы.

Держим один щуп на металлической части корпуса, а вторым щупом прозваниваем любой черный провод в коннекторе. Сопротивление должно быть 0, учитывая погрешность мультиметра.

Замкните щупы мультиметра и посмотрите какую цифру он показывает, это и будет нулевое значение с погрешностью.

Замер на пробой БП

Замер сопротивления на пробой БП — нулевое сопротивление

Потом один щуп оставляем на корпусе, а вторым соединяемся со средним контактом на сетевой вилке, которой является заземлением.

Проверка заземления

Проверка заземления БП — нулевое сопротивление

В обоих случаях сопротивление должно быть нулевым, если это не так, то БП под замену.

Шаг 8. Проверка сопротивления в цепях питания

Ставим один щуп на корпусе или на среднем контакте вилки. Вторым щупом проверяем сопротивление на всех цветных проводах: красный, оранжевый, желтый.

Значения должны быть больше нуля. Если значение меньше 50 Ом — это означает проблему в цепях питания.

Проверка сопротивления БП

Проверка сопротивления в цепях питания — в норме больше 50 Ом

Способ 3. Проверка БП тестером без компьютера

С помощью тестера можно проверить работоспособность блока питания без помощи компьютера и мультиметра.

Я приобрел себе такой тестер. Когда вызывают на заявку и говорят, что компьютер совсем не включается, то я беру тестер с собой для диагностики блока питания.

Тестер БП

Тестер компьютерного блока питания

Купить тестер БП можно по — этой ссылке

Подключаю блок питания к тестеру, как на фото ниже. Включаю кабель в розетку и смотрю. Если БП сгорел, то на тестере экран не загорится. Если тестер пикнул и загорелся экран с показаниями, значит БП рабочий, но нужно ещё проверить показания.

Проверка тестером БП

Проверка БП тестером

Смотрим показания на тестере слева направо:

  • -12V — 11.8
  • +12V2 — 12.3
  • 5VSB — 5.0
  • PG — 280 ms, это время задержки включения
  • +5V — 5.0
  • +12V1 — 12.3
  • +3.3V — 3.3

И сравниваем с таблицей допустимых значений.

Допустимые значения БП

Блок питания — таблица допустимых значений

  • +12V1 (желтый провод) — используется на основном 24-pin коннекторе для материнской платы.
  • +12V2 (желтый) — используется на 4-8 pin коннекторе для процессора.
  • +5V (красный) — служит для подачи напряжения на жесткие диски, оптического привода, дисководы и другие устройства.
  • +3.3V (оранжевый) — используется для подачи питания на платы расширения, присутствует в коннекторе SATA для подключения жестких дисков и SSD.
  • -12V (синий) — не используется на современных компьютерах.
  • +5VSB (фиолетовый) — дежурное напряжение.
Читайте также:  Блок питания Планар БП 01 12 150 ВХ 1 выход

Как видно из таблицы все показания тестера в норме.

Для разницы, на видео заснял, как с помощью этого тестера можно определить брак нового блока питания. Но при этом сам БП работает, компьютер включается. Проверил БП тестером, значение PG (Power Good) мигает — 0 и пикает. На исправных БП значение PG должно показывать 100-300ms.

Признали брак, поменял блок питания довольно быстро, так как не прошло 2 недель с момента покупки. Без тестера, в течении недели на врядли бы заметил, что БП с браком.

Способ 4. Проверка БП программой под нагрузкой

Блок питания без нагрузки может включаться и выдавать нормальные показания. Но стоит запустить игру, то компьютер может перезагрузится. Это говорит о проблеме в блоке питания.

Для этого нужно проверить блок питания под нагрузкой, с помощью программы OCCT — скачать с оф сайта.

Программа OCCT

  1. Запускаем OCCT.
  2. Выбираем режим проверки — Power.
  3. Ставим время теста 30-60 минут.
  4. В правом колонке открываем показания с напряжениями.
  5. Запускаем тест.

Программа OCCT для диагностики системы

Во время теста смотрим показания по линиям +12V, +5V, +3.3V.

В моем случаем тест показывает:

Стресс тест в OCCT

  • По +12V линии — 11.65V, это в пределах нормы. Помним предельно допустимое значение +-5% от 11.4 до 12.6V.
  • По +5V линии — 4.84V, в пределах нормы.
  • По +3.3V линии — 3.23V, в пределах нормы.

Стресс тест в OCCT

На неисправном блоке питания, при запуске такого теста через 3-5-10 минут компьютер экстренно вырубится.

Если тест завершился без ошибок, значит блок питания в норме.

После завершения теста можете сохранить подробный отчет с показаниями — нажав специальную кнопку.

Стресс тест завершен

Стресс тест завершен без ошибок

В подробном отчете обратите внимание на перепады напряжений. Если линии ровные, не было резких просадок по напряжению во время теста под нагрузкой, то значит все хорошо.

Результаты OCCT

Подробный отчет стресс теста OCCT

Итак подведем итоги:

  1. Если компьютер совсем не включается, проверяем блок питания скрепкой, замкнув зеленый и черный провод.
  2. Если ПК включается через раз, периодически перезагружается, то проверяем напряжение в БП по линиям +5V, +3.3V, +12V.
  3. Проверяем мультиметром — сопротивление на пробой БП.
  4. Мультиметра нет, используем тестер БП — можно купить здесь.
  5. Проверяем БП под нагрузкой с помощью программы OCCT.
  6. Сравниваем показания с допустимыми значениями — если есть выход по напряжению за пределы, то меняем БП.

Если у вас проблемы с компьютером, то можете обратиться ко мне — оставьте заявку на диагностику. Подписчикам группы ВК скидка 10% — вступайте в группу.

Обложка группы VK

Помогу решить проблему с ПК или ноутбуком. Вступайте в группу VК — ruslankomp

Источник

Компьютерные блоки питания ATX или крик души

Сам не отношу себе к знатокам импульсных блоков питания просто напишу о наболевшем, что бросается в глаза даже дилетанту. На днях начал переделывать очередной компьютерный блок питания для нужд паяльной станции Ну и вообщем взгляд на внутренности данных блоков напомнили о их проблемах.

Итак самый тяжелый случай блоки питания которыми комплектуются не дорогие корпуса.

Для переделки были разобраны очередные неисправные блоки питания, мощность была указана в 450 Вт.

Синдром у обоих был похожий при старте срабатывала зашита.

Что же мы видим внутри, блок построен на 3845.

Ну явно начинка не тянет на 450Вт диоды стоят 10А т.е. по выпрямителю суммарная мощность менее 200Вт дроссель совсем хилый.

Неисправность в этом блоке заключалась в выходе из строя оптопары отвечающей за стабилизацию напряжения.

А вот второй блок похоже пытались эксплуатировать в более приличном компьютере.

Вздулись конденсаторы фильтров и обратите внимание на цвет изоляции провода дросселя в районе контактов и на самом дросселе, это один провод.

Заменой вздувшихся конденсаторов его уже не вылечишь, дроссель на выброс, а сам блок в качестве донора.

Кстати вот фотки рабочего блока из корпуса Assus мощность 450Вт аналогичная предыдущим схема техника.

Внутри все смотрится несколько лучше.

Диодные сборки или установлены более мощные или включены по две. Дроссель также намного массивней.

Диодные сборки конечно сложно рассмотреть не вскрывая блок но дроссель зачастую довольно хорошо просматривается.

Теперь вторая проблема

А что же с более фирменными блоками.Например вот блоки FSP, лежит целая стопка не исправных. Внутри все выглядит вполне достойно.

У всех блоков АТХ есть ахиллесова пята вне зависимости от мощности. Это источник дежурного напряжения +5VSB.

Вроде что такого, но от этого источника помимо всякой ерунды на материнке (которая не так много потребляет) питаются все порты USB.

У него указан максимальный ток 2А на некоторых блоках 2.5А, но такой ток можно снять только при принудительном обдуве (и желательно не горячим воздухом).

Сейчас же к USB подключена куча устройств, и некоторые с большим потреблением винчестеры 0.5А, телефон или планшет если фирменный ограничит свой аппетит 0.5А, а китай может и 1А потребовать.

(Кстати довольно полезный девайс: USB-тестер. Позволяет определить как потребляемый ток так и отбраковать плохие зарядки выдающие повышенное напряжение. Обзор на Паяльник TV)

Представим ситуацию когда у вас закончился ожесточенный бой, вы выключаете компьютер. К USB прицеплены винчестеры телефон и.т.д..

Обдув блока и корпуса прекратился и горячий воздух от раскаленных процессора и видеокарты начинает подниматься вверх. В итоге температура в блоке нарастает и источник дежурки вынужден работать с перегревом. И вполне может и спечься, при следующем включении компа можно этого включения и не получиться.

Самое странное что зачастую он не сгорает но начинает выдавать явно не пять вольт.

В приведенных выше блоках источник дежурного питания FSP дополнительно расположен между радиаторами, что возможно усугубило ситуацию. В общем все они выдают по +5VSB явно не пять вольт, хотя светодиодики на материнке гореть будут.

Сейчас я стараюсь не обвешивать комп по USB как новогоднюю елку и стараюсь не использовать его в выключенном состоянии как зарядку для всех гаджетов.

Ну и пара отступлений.

1. Теперь немного о ремонте.

А точнее самый легко устранимая поломка.

И так блок вообще не работает т.е. нет напряжения даже на дежурке.

Зачастую это выбило предохранитель по скачку напряжения. Проверяется прозвонкой предохранителя.

Но помимо предохранителя необходимо обязательно прозвонить и варисторы. Их может быть до трех штук, один по переменке и два шунтируют конденсаторы.

При прозвонке их сопротивление должно стремится к бесконечности, иначе их надо заменить. (В без выходной ситуации, на свой страх и риск, их можно и просто выпаять. Но после этого блок питания не будет защищен от скачков напряжения и может сгореть сам и унести с собой в могилу материнку с чем ни будь еще.)

2. Вредный совет при переделке компьютерного БП АТХ в лабораторный.

Встречал несколько раз рекомендацию для увеличения тока снимаемого с 12в канала в старых блоках, заменять диодную сборку и ставить ее из 5в канала. Казалось бы диодная сборка 5в канала имеет максимальное напряжение 40-45в, что почти в двое больше напряжения холостого хода 12в канала. Но импульсные напряжения могут превышать (особенно в моменты регулировки напряжения или изменения режима работы) это напряжение, хотя зачастую блок питания может работать при этом продолжительное время. Выбивание диода зачастую приводит к сгоранию и высоковольтного транзистора. (Родные диоды в 12в канале как правило на 100в и если бы можно было сэкономить то китайцы точно бы это сделали до нас)

darkly Опубликована: 15.11.2015 0 2
Вознаградить Я собрал 0 1

Источник