Меню

Литий ионный аккумулятор аббревиатура

Маркировка аккумуляторов 18650

Маркировка аккумуляторов формата 18650 разных производителей очень похожа. Например, Samsung выпускает аккумуляторы INR18650-25R, INR18650-30Q, INR18650-35E. Что же скрывается за этими буквами и цифрами?

Материал катода

Первые две буквы обозначают элементы на основе каких химических элементов построен катод данного аккумулятора.

ICR – аккумуляторы с катодом из кобальтата лития. Емкость ICR аккумуляторов небольшая – 2000-2500 мА*ч, допустимые токи разряда также небольшие – 1-2С. Преимуществом данных аккумуляторов является их невысокая цена. Аккумуляторы формата 18650 данного типа применяются, например, в батареях ноутбуков, где не требуются высокие токи нагрузки. Минимальное напряжение, ниже которого разряжать ICR-аккумулятор нельзя, составляет 2,75 В. Срок службы – примерно 300 циклов заряда/разряда. ICR-аккумуляторы самый небезопасный тип аккумуляторов. Не рекомендуется использовать данный тип аккумуляторов без плат защиты (PCB) в устройствах, потребляющих относительно высокие токи (более 0,5C-1C).

IMR – аккумуляторы с литий-марганцевым катодом. Являются высокотоковыми аккумуляторами, способны выдавать токи до 4C-10C. Аккумуляторы с литий-марганцевым катодом имеют более низкое внутренне сопротивление, чем ICR аккумуляторы. Обладают небольшой емкостью. Минимальное напряжение, ниже которого разряжать IMR-аккумулятор нельзя, составляет 2,75 В. Стоимость данных аккумуляторов выше, чем у аккумуляторов ICR-типа. Данные аккумуляторы более безопасны в эксплуатации, чем ICR, т.к. способны выдерживать более высокие температуры без деградации. Кроме того, при работе на средних токах, аккумуляторы данного типа греются довольно слабо.

INR – аккумуляторы с катодом из никелата лития. Одна из самых современных на сегодня технологий производства аккумуляторов формата 18650 . Конструкция катода обеспечивает высокий ток разряда в сочетании с довольно высокой емкостью аккумулятора. Являются также высокотоковыми аккумуляторами, способны выдавать токи до 4C-10C, как и аккумуляторы IMR-типа. Обладают емкостью выше, чем IMR-аккумуляторы. Минимальное напряжение, ниже которого разряжать IMR-аккумулятор нельзя, составляет 2,5 В (2,65 и 2,75 В – у отдельных моделей аккумуляторов). Стоимость данных аккумуляторов выше, чем у аккумуляторов IMR-типа. Аккумуляторы данного типа подходят для высокотоковых потребителей (шуруповерты, вейп-девайсы, электротранспорт). Срок службы – примерно 200-300 циклов заряда/разряда.

NCR (NCA) – аккумуляторы с катодом из никелата лития и кобальта, в качестве изолятора используется оксид алюминия. АккумуляторыNCR-типа входят в число лидеров по емкости (до 3600 мА*ч). Кроме большой емкости, у аккумуляторов NCR-типа самый долгий срок службы, они выдерживают более 500 циклов заряда/разряда. Допустимые токи разряда небольшие – 1-2С. Минимальное напряжение составляет 2,5 В. Аккумуляторы данного типа используются в электроавтомобилях Tesla и электровелосипедах. Если не требуются большие токи и необходима высокая емкость и долгий срок службы, то именно аккумуляторы NCR-типа будут оптимальным выбором.

Обозначение размера аккумулятора

Далее идет обозначение 18650 . Это обозначение размеров аккумулятора в миллиметрах. 18 мм – диаметр, 65 мм – длина аккумулятора. Следует помнить, что у аккумуляторов с платой защиты (PCB) длина аккумулятора увеличивается на 1-2 мм и составляет 66-67 мм, вместо стандартных 65 мм.

Обозначение модели и емкости

Буквы, которые находятся дальше, условная маркировка емкости. Данное обозначение у каждого производителя индивидуальное. Например, у аккумулятора NCR18650B – «B» у Panasonic обозначает емкость 3400 мА*ч. NCR18650A – аналогичная модель, но с емкостью 3000 мА*ч. У аккумуляторов Samsung две цифры в конце маркировки также обозначают емкость. INR18650-30Q – емкость 3000 мА*ч, INR18650-25R – емкость 2500 мА*ч.

Дата производства аккумуляторов 18650

Дата производства li-ion аккумуляторов формата 18650 у всех производителей располагается в маркировке на внешней части аккумуляторов (на термоусадочной оболочке). У разных производителей принцип маркировки даты производства аккумуляторов отличается.

Аккумуляторы Panasonic

Маркировка аккумуляторов 18650 Panasonic

Наименование модели аккумулятора располагается в первой строчке маркировки между значками «+» и «-«. Далее идет блок с предупреждением об осторожности использования аккумулятора. Также сквозь термоусадку просвечивает квадратный QR-code. QR-code индивидуальный для каждого аккумулятора и никогда не повторяется.

Маркировка с датой производства аккумуляторов располагается в двух местах: на металлической оболочке корпуса под термоусадкой и на самой термоусадке в нижней части корпуса около минусового контакта. Маркировка, нанесенная на металлический корпус, немного просвечивает через термоусадку. У поддельных аккумуляторов Panasonic маркировка даты производства на металлическом корпусе, как правило, отсутствует. Нанесена маркировка только на термоусадку.

Первый символ обозначает ГОД, второй — МЕСЯЦ, третий-четвертый – ДЕНЬ МЕСЯЦА.

Первый символ Второй символ Третий и четвертый символы
ГОД МЕСЯЦ ЧИСЛО
4 — 2014 год 1 — январь 01 — 1 число
5 — 2015 год 2 — февраль 02 — 2 число
6 — 2016 год 3 — март 03 — 3 число
7 — 2017 год 4 — апрель
8 — 2018 год 5 — май 11 — 11 число
9 — 2019 год 6 — июнь 12 — 12 число
7 — июль 13 — 13 число
8 — август 14 — 14 число
9 — сентябрь
X -октябрь 29 — 29 число
Y — ноябрь 30 — 30 число
Z — декабрь 31 — 31 число

Аккумуляторы Samsung SDI

Маркировка аккумуляторов 18650 Samsung

Наименование модели аккумулятора расположено в первой строчке маркировки. Во второй строчке — наименование производителя (Samsung SDI или Samsung SDIEM).

У аккумуляторов Samsung с обозначением SDI маркировка с датой производства находится в правой части третьей строчки надписи на термоусадке. Маркировка содержит четыре символа, первый символ неважен), второй символ обозначает ГОД, третий — МЕСЯЦ, четвертый – НЕДЕЛЯ МЕСЯЦА.

Второй символ Третий символ Четвертый символ
ГОД МЕСЯЦ НЕДЕЛЯ
E — 2014 год 1 — январь 1 — 1 неделя
F — 2015 год 2 — февраль 2 — 2 неделя
G — 2016 год 3 — март 3 — 3 неделя
H — 2017 год 4 — апрель 4 — 4 неделя
I — 2018 год 5 — май
J — 2019 год 6 — июнь
K — 2020 год 7 — июль
8 — август
9 — сентябрь
A -октябрь
B — ноябрь
C — декабрь

Второй вариант маркировки для аккумуляторов Samsung SDI

Существует еще второй вариант маркировки аккумуляторов Samsung SDI. Он отличается от первого только маркировкой даты производства. Если последний символ третьей строчки маркировки «T», то дата выпуска зашифрована в первых трех символах (первый символ — год, второй — месяц, третий — неделя месяца).

Маркировка аккумуляторов Samsung

В этом случае расшифровка даты будет осуществляться следующим образом:

Первый символ Второй символ Третий символ
ГОД МЕСЯЦ НЕДЕЛЯ
E — 2014 год D — январь 1 — 1 неделя
F — 2015 год E — февраль 2 — 2 неделя
G — 2016 год F — март 3 — 3 неделя
H — 2017 год G — апрель 4 — 4 неделя
I — 2018 год H — май
J — 2019 год I — июнь
K — 2020 год J — июль
K — август
L — сентябрь
M -октябрь
N — ноябрь
O — декабрь

Последняя буква «T» — обозначает завод Samsung SDI в городе Tianjin.

Аккумуляторы Samsung SDIEM

Маркировка аккумуляторов Samsung

Наименование модели аккумулятора расположено в первой строчке маркировки. Во второй строчке — наименование производителя (Samsung SDI или Samsung SDIEM). SDIEM — это подразделение Samsung в Малайзии.

У аккумуляторов Samsung c обозначением SDIEM маркировка с датой производства находится в правой части третьей строчки надписи на термоусадке. Маркировка содержит четыре символа, первый символ неважен, второй символ обозначает ГОД, третий — МЕСЯЦ, четвертый – НЕДЕЛЯ МЕСЯЦА. Структура обозначения даты такая же, как и у аккумуляторов Samsung SDI. Но расшифровка обозначения немного другая.

Второй символ Третий символ Четвертый символ
ГОД МЕСЯЦ НЕДЕЛЯ
E — 2014 год P — январь 1 — 1 неделя
F — 2015 год Q — февраль 2 — 2 неделя
G — 2016 год R — март 3 — 3 неделя
H — 2017 год S — апрель 4 — 4 неделя
I — 2018 год T — май
J — 2019 год U — июнь
K — 2020 год V — июль
W — август
X — сентябрь
Y — октябрь
Z — ноябрь
— декабрь

Аккумуляторы LG

Маркировка аккумуляторов 18650 LG

Дата производства аккумуляторов LG находится в первых четырех символах второй строчки на термоусадке. Первый символ обозначает ГОД, следующие три символа обозначают ПОРЯДКОВЫЙ НОМЕР ДНЯ в году (001 – 1 января, 365 – 31 декабря).

Каждый аккумулятор имеет квадратный QR-code. QR-code индивидуальный для каждого аккумулятора и никогда не повторяется.

Первый символ Второй, третий и четвертый символы
ГОД ДЕНЬ ГОДА
N — 2014 год 001 — 1 января
O — 2015 год 244 — 1 сентября
P — 2016 год 365 — 31 декабря
Q — 2017 год
R — 2018 год
S — 2019 год
T — 2020 год

Новая маркировка аккумуляторов LG (с 2019 года)

В 1 квартале 2019 года LG CHEM анонсировала изменение маркировки своих li-ion аккумуляторов. Наименование модели приведено к стандартному виду (INR18650***), также добавился блок с предупреждением об опасности неправильного использования li-ion аккумуляторов.

Новая маркировка аккумуляторов 18650 LG - с 2019 года

Наименование модели находится в первой строчке маркировки. Первый символ второй строчки обозначает завод-изготовитель аккумулятора, следующие четыре символа — дату производства. Первый символ даты обозначает ГОД, следующие три символа обозначают ПОРЯДКОВЫЙ НОМЕР ДНЯ в году (001 – 1 января, 365 – 31 декабря). Также сохранился индивидуальный QR-code для каждого аккумулятора, который никогда не повторяется.

Источник

Литий ионный аккумулятор аббревиатура

Про литий-ионные аккумуляторы — техно-ликбез

Не так давно обнаружил на старости лет, что литий-ионные и литий-полимерные аккумуляторы — это, оказывается, разные вещи (хотя и родственные). В ходе разбирательства выяснил несколько интересных фактов; и, как обычно, оформлю всё это в техническую статейку — авось кому пригодится.

Степень технической грамотности российского обывателя по части бытовых аккумуляторов весьма низка. Например, поймал себя на мысли, что слово «батарейка» у меня давно не ассоциируется с гальваническими источниками тока; для меня это всегда == аккумулятор; к слову сказать, в английском слово battery подразумевает и то и другое. Тем не менее, для широчайших масс населения батарейка = «пальчики», «мизинчики» и прочие одноразовые элементы питания. Батарейки в обывательском понимании этого слова действительно служат дольше и надёжнее аналогичных аккумуляторов; зачем платить больше, если можно вставить батарейку и забыть; а аккумуляторы стоят в разы дороже; по крайней мере, здесь у нас, в краях де-индустриализации. Если же пользоваться электроприборами достаточно часто и вне дома, то аккумуляторы сэкономят и деньги и нервы; в случае севшей батарейки заменить её обычно нечем, а аккумуляторы подразумевают наличие некоторого набора сменных элементов, находящихся на зарядке. Я уж не говорю за экологию — один аккумулятор заменит сразу несколько батареек, а вред природе от него как от одной, а то и меньше.

Итак. Речь в статье пойдёт именно про аккумуляторы, т.е. перезаряжаемые источники тока. Наиболее известны обывателю заменители тех же «пальчиков» и «мизинчиков», т.е. элементов АА и ААА, аккумуляторы для бытовой техники на основе никель-кадмиевых или никель-металгидридных элементов. Эти технологии (также родственные) многим хороши, но, к сожалению, когда речь идёт за аккумуляторы, всегда половина информации будет про недостатки. У «никелевых» батареечек их сразу несколько (это, увы, касается любой современной технологии); из которых наиболее очевидный — саморазряд; если оставить такой аккумулятор относительно надолго в «заряженном» состоянии, то в ответственный момент может оказаться, что он разряжен. Для бытовых нужд это самая большая засада — такие аккумуляторы нужно регулярно перезаряжать, в отличие от «классических» батареек, которые могут валяться и ничего им не будет годами. Также у них не такой уж большой срок службы, и довольно низкое напряжение; что для некоторых целей является критическим.

Довольно часто даже в бытовой технике требуется определённое напряжение — например, пульту ДУ достаточно 1В для работы, а вот мобильной акустической системе уже нужно 6-9В. В таком случае применяется т.н. многобаночный аккумулятор, то есть последовательное подключение элементов; принцип работы авто-аккумулятора (свинцового типа) можно почитать тут.

Подключение 4 «АА»-элементов последовательно даст итоговое напряжение в 4.8В.

Соответственно, дабы получить высокое напряжение, нужно подключать больше и больше элементов питания. Для ходового в авиа-моделизме напряжения в 12В в случае «никелевых» элементов нужно десять последовательных «банок», т.е элементов питания. При этом проблемы одной из «банок» будут отражаться на всей сборке, и чем больше «банок», тем в общем случае хуже.

В общем, уже давным-давно де-фактом стандартом питания для бытовой техники и гаджетов стали литий-ионные аккумуляторы, и их «родня» — литий-полимерные элементы, «лип ошки» (от сокращения Li-Po). Именно такие элементы стоят в смартфонах, ноутбуках, на них работают мобильные инструменты типа шуруповёртов, а также практически все летающие и ползающие дроны также питаются от этого вида аккумуляторов.

Читайте также:  Рейтинг лучших садовых светильников на солнечных батареях на 2021 год

По сравнению с другими типами элементов «литиевые» отличаются меньшей массой, большей токоотдачей, относительно высоким рабочим напряжением (до 4.35В), малым саморазрядом и прочая. Благодаря этому значительная часть бытовой техники в Китае переходит с «пальчиковых» батареечек на формат элементов 18650. Это типоразмер, в котором может быть заключены очень разные элементы питания, сильно разнящиеся по всем электрическим параметрам; поэтому именно про них в основном сегодня и поговорим. Сама по себе эта тарабарщина из цифр означает ширину и длину элемента — 18мм*65мм; существует масса других форм-факторов элементов питания, среди которых далеко не все являются литий-ионными. Но если говорить за формат 18650, то он заполнен только ли-ион-элементами; и сейчас является одним из самых распространённых форматов аккумуляторов в мире.

Важнейшим отличием 18650 от АА и ААА является не размер, а технология, которая меняет все электрические характеристики. Если попытаться по-простому затолкать 18650 туда, где используется АА и ААА, то возможно всё, вплоть до взрывов и пожаров; так что применять их нужно по назначению; либо же думать головой. Основное очевидное отличие от «пальчиков»-«мизинчиков» — в увеличенном втрое напряжении; АА и ААА выдают по 1.25В максимум, 18650 в зависимости от технологии может дать и 4.35В. Их можно использовать как заменители АА и ААА в бытовой технике, но с умом.

Для разбавления скучных фактов приведу пример, для кого-то может оказаться неожиданным — как минимум часть (а возможно и все) «инновационных» автомобилей Тесла ездят на батареях, составленных из. 18650.

Все т.н. «повербанки» (powerbank), мобильные аккумуляторы, тоже собираются на основе 18650; причём на али можно найти комплекты для сборки «батарейки» любой мощности, в зависимости от количества элементов; и качество этих элементов вы можете задавать сами, а не покупать кота в мешке, чем мы все занимаемся, покупая готовые сборки. 99% функционала таких аккумуляторов зависит от применяемых элементов; а сами корпуса и необходимая электроника, как можно видеть, стоит копейки.

На сегодняшний день элементы 18650 имеют максимальное напряжение 4.1В-4.35В (в зависимости от технологии, нужно уточнять), и максимальную ёмкость в 3400мА/ч. Последнее особенно важно — китайские производители любят написать на своих элементах мега-цифры, которые впоследствии, разумеется, не подтверждаются.

Производят 18650 в Южной Корее, Японии и Китае; причём моду задают японцы и корейцы. Китайцы быстро учатся, но пока что их творения в основном заключаются в разной степени удачности клонах корейских и японских элементов.

К чему это я. В отличие от более-менее стабильного рынка элементов АА и ААА, на поле 18650 творится разброд и шатание; технология литий-ионных элементов ещё не «устаканилась», и постоянно выходят новые модификации элементов, отличающиеся по «химии», т.е. базовой технологии производства. Это-то и приводит к тому, что один тип ли-ион элементов может выдавать напряжение в 4.1В, а другой — в 4.35В; а это означает, что их надо по-разному заряжать и разряжать. И да, для зарядки литий-ионных и ли-поли-элементов и аккумуляторов нужны свои зарядки; причём, желательно, «интеллектуальные» — т.е. с возможностями управления и мультиметра.

И вот теперь переходим к недостаткам данной технологии. Их у неё немало. В частности, литий-ионные элементы небезопасны, особенно при зарядке; перезарядка свыше номинала, а также перегрев или понижение давления в самолёте может привести к их возгоранию (ранние типы даже взрывались); вот тут хладный сказ от техноблогера, которого регулярно смотрю. Осторожный обыватель может возопить, что, дескать, не будут использовать 18650 никогда-никогда; но, граждане и старушки, в ваших телефонах, планшетах, плеерах и ноутбуках используются те же самые элементы; причём в ноутбуках так и вовсе используется ровно то же многобаночное подключение элементов 18650, что и в вышеприведённом примере. И в некоторых планшетах, если не изменяет склероз, тоже.

У литий-ионных и литий-полимерных элементов есть рабочий диапазон напряжения, за пределы которых выходить практически нельзя; это приведёт либо к выходу элементов из строя, либо к ещё более печальным событиям, описанным выше. Элементы с номинальным напряжением 3.6В имеют диапазон от 2.6 до 4.1В; для 3.7В — от 2.7 до 4.2В, для 3.8В — от 2.9В до 4.35В. Узнавать параметры элемента лучше всего не по рекламным надписям, а по т.н. даташиту (datasheet); эта информация распространяется производителями или собирается экспертами; для каждого типа можно найти в интернете самостоятельно. Крайне полезно знакомиться с даташитом перед покупкой — если там написано, например, что вес элемента — 45г, а у продавца указано 40 или меньше, это вопрос — не дурят ли нашего брата.

Как и на любом «диком» рынке, на поляне 18650 полно мошенников, и надо быть осторожным — особенно при любимых многими покупках в китайских онлайн-магазинах. Хотя большинство из них применяют защиту покупателя, и в случае откровенного брака, скорее всего, вернут вам деньги, всё равно велик риск получить не то, что нужно, и при этом потерять кучу времени. Например, на том же Али очень много китайских копий известных марок батареек (да, как уже говорил, есть и «бренды» среди 18650); далеко не всегда это откровенный обман, но, скорее всего, они будут отличаться от оригиналов не только по ёмкости, но также и по токоотдаче, весу, а, возможно, и по внутреннему сопротивлению (что приведёт к «просадке» напряжения под нагрузкой, но об этом — в конце статьи).

Тем не менее, если подходить с умом, то использование 18650 может вас здорово выручить. Например, те же мобильные аккумуляторы — если нет нужды прямо здесь и сейчас — покупать в сборе имхо нездоровый фанатизм; заказываете нужный корпус и нужное число элементов нужного объёма, и вуаля — готова сборка конкретно под вас; обычно ничего паять не нужно, просто собрал и включил. И в случае выхода батарейки (повербанки) из строя разбираем и смотрим, кто там сдох — ишак или падишах. К тому же, можно докидывать батареечки в сборку при долгих поездках.

Если заморочиться, то есть метод получения 18650 практически задаром — разборкой «сдохших» аккумуляторов от ноутбуков. Проверил этот метод — действительно, работает; мне достался аккумулятор от ноутбука Sony, с соответствующей маркировкой на батарее, а внутре оказались подписанные как попало элементы 18650, обнаружить datasheet от которых не удалось; правда, батарее уже много лет. Все они оказались рабочими, с одним важным «но» — внутреннее сопротивление всех шести элементиков выше 100мОм, что весьма много. Метод добычи элементиков из ноутбуков — весьма время-затратный, и рекомендовать его я не буду; он подойдёт только для энтузиастов.

Как достать и восстановить элементы 18650 из батареи ноутбука

Для повседневного же использования лучше покупать новые элементики питания; во многом из-за следующего недостатка ли-ион технологии — старения. Технологии изготовления ли-ион-элементов первого поколения приводили к постоянному эффекту потери 10% ёмкости элементика в год; причём неважно, хранится ли он на складе или пашет под нагрузкой. В современные элементы при изготовлении добавляют консерванты, которые позволяют хранить их до первого использования практически без потери ёмкости; несколько циклов заряд-разряд разрушают консервант, и начинается «штатное» старение. Но надо быть готовым к тому, что считать возраст батарейки придётся от даты производства, а не от начала использования. Что же касается батареек из ноутов, можно прикинуть, сколько они потеряли от номинала.

Теперь наконец расскажу немного про литий-полимерные батареечки и элементики. Их основное отличие — в использовании полимера вместо гелевого (т.е. жидкостного) электролита. Технология ли-по-элементов ещё более новая, чем литий-ионная, и в ней нет такого разнообразия, поэтому практически все «липошки» обладают номинальным напряжением 3.7В и рабочим диапазоном от 3 до 4.2 В. Ли-по батареечки обладают чуть меньшим весом, чем ли-ион, и обладают потенциально бОльшей токоотдачей; за что очень любимы авиамоделистами, которым необходимы лёгкие и мощные аккумуляторы. Все Фантомы, Хабсаны, Валкиры и прочая летают именно на таких аккумуляторах.

Аккумуляторы обладают такой важной характеристикой, как токоотдача; ток нагрузки, измеряемый в С, т.е. ёмкости аккумулятора в ампер-часах; на сборках обычно пишут ёмкость в милли-ампер-часах (мА/ч), нужно умножать это число на 1000. Например, аккумулятор в 1000 мАч и токоотдачей 1С выдаст тока в 1000/1000*1 = 1А. Ходовой аккумулятор для дроноводов в 5200мА/ч и с токоотдачей 20С выдаст, соответственно, 5.2*20 = 104А. И здесь порылось куда больше собак, чем хотелось бы — поскольку измерить объём достаточно просто, а вот токоотдачу проверить уже сложнее; и в итоге производители пишут на аккумуляторах, что им взбредёт в голову. А без нужной токоотдачи крокодил не ловится, не растёт кокос — не будет нужной мощности. И любимый шуроповёрт не сможет провернуть саморез, а дрон вместо бреющего полёта будет натужно махать крыльями на взлётке.

Теперь — про неожиданное. Особо не разобрался, в чём тут дело, но для достижения высокой токоотдачи аккумуляторы делают тяжёлыми (возможно, увеличивается контакт с электролитом?), т.е. в пределах одной массы токоотдача разменивается на ёмкость. И большинство литий-полимер аккумуляторов обладает высоким С — для успешного примерения в токоёмких устройствах, таких как дроны. Для гоночных аппаратов важнее мощность, а не объём — они из-за своей мощности утащат что угодно; но вот для летающих камер это совсем не так. А в последнее время мы с коллегой по хобби занялись темой долголётов, и для них это ровно наоборот; токоотдача нужна весьма небольшая, главное — объём аккумулятора. И подобрать нужные ли-поли-аккумуляторы оказалось сложнее, чем. собрать из 18650, что та Тесла.

Как собрать батарею самому; один из многих примеров

При логическом взгляде на первый взгляд это казалось ересью — каждый 18650 содержит собственную защитную оболочку, которая немало весит; как тут соревноваться с готовыми сборками на ли-по. Но собственная практика показала, что эта схема вполне работает. Всё-таки размен токоотдачи на объём в случае авиамодельных ли-по-сборок слишком велик. Возможно, где-то можно найти низкотоковые сборки; не видел.

Как уже говорил выше, в аккумуляторе всё зависит от используемых элементов; в случае ли-по мы гарантированно покупаем кота в мешке (каламбурчик), и должны верить производителю на слово; в случае сборки из 18650 можно покурить даташиты и определить, что нужно лично вам. Пока я думал и прикидывал шансы, коллега Фёдор уже нахватил каких попало батареек на Али, что привело к ожидаемому фейлу (суть — после 5 минут) — полётное время на сборке 6s3p составило. 25 секунд; правда, возможно, ещё пошаманим и чего-нибудь придумаем и с этой сборкой.

Поэтому решил особо не выпендриваться, и рассматривал для тестов популярные варианты, используемые в авиамоделизме — Samsung NCR (с максимальным подтверждённым объёмом на сей момент — 3400 мА/ч), либо же LG HG2; объёмом поменьше, но с повышенной до 30А токоотдачей. В итоге всё же взял HG2, на Али; и был до последнего момента в неуверенности; батарейки пришли вовремя, похожие на оригинал, заряд берут честно, в 3000 mAh и даже больше; но вот засада — внутреннее сопротивление всех элементиков выше 100 мОм, как и в случае упомянутой выше разборки древнего ноутбучного аккумулятора. Это живо напомнило опыт Фёдора, и как-то стало тревожно на душе.

Когда ехали на тестовый полёт — после 35-градусных морозов потеплело до -25С и решили-таки освежиться — то надеялись, что аппарат (тот самый, на котором сборка Фёдора выдала 25 секунд полёта) провисит хотя бы минут 5. Всё-таки мороз, все дела. Больше всего было опасений за просадку напряжения после взлёта — большое внутреннее сопротивление означает падение напряжения под нагрузкой. Но после взлёта напряжение просело всего на вольт, и почему-то решило дальше не проседать. Полчаса гоняли аппарат, который в конце концов сошёл с ума и протаранил берёзу — скорее всего, замёрз или раскалибровался компас; агрегат пока в работе, вполне может быть и то и другое; главное, что оставалось ещё порядочно заряда; собирались садиться на 18.5В, а было ещё почти 20В.

Читайте также:  Где используются аккумуляторы 18650

DVR-запись на телефон через приёмник Eachine ROTG01, который наших морозов не держит; поэтому запись периодически прерывается; смотреть на таймер внизу справа.

Максимальное полётное время, которое мы на аппарате достигали на липо-сборке 5500mA/h 6s — 38 минут, при весе сборки в

800 гр,, в плюсовую температуру. А тут — 32 минуты в -25С, и это был явно ещё не конец — на сборке 6s3p в 9000 mA/h весом в те же 800 гр. Возможно, на Самсунгах, которые 3400 против 3000, будет ещё больше. Особенно, если их поставить 4 в параллель, а не 3. 🙂 В общем, простор для махинаций — величайший. Главное — не нужно привязываться к готовому производителю, и можно всё колхозить самим.

Больше всего беспокоит внутреннее сопротивление батареечек — возможно, конечно, это тлетворное влияние консервантов (апдейт — да, так и есть). Например, батареечки из ноута, использованные для питания FPV-шлема в полётный день, моментально (за 12 минут) просели до опасных значений — то ли замёрзли, то ли не выносят нагрузки, ибо дома в тепле показали почти полный заряд — вот вам и внутреннее сопротивление.

Технологии литий-ионных и литий-полимерных аккумуляторов — далеко не панацея; но при грамотном применении способны облегчить жизнь. И не только в экстремальных хобби, но и вполне в быту; у каждого свои потребности.

Апдейт: после нескольких циклов заряд-разряд батарейка из 18650 стала показывать нормальное сопротивление — от 11 до 14 мОм на баночку (пруф).

Источник

Какие бывают аккумуляторы в мобильной, компьютерной и бытовой технике

Аккумуляторы окружают нас повсеместно. Их можно встретить как в привычных каждому пользователю мобильных гаджетах, так и в сложных системах резервного электропитания. В каждой из областей используется свой тип аккумуляторной батареи, в которой ее характеристики «раскрываются» наилучшим образом. В данном материале поговорим о типах аккумуляторных элементов, областях применения и основных правилах эксплуатации.

Аккумуляторы. Общие принципы

По историческим меркам аккумулятор — довольно «молодое» изобретение, которому немногим более 160 лет. Основной принцип работы любого аккумуляторного элемента — протекание в нем обратимой электрохимической реакции, т. е. при приложении к контактам элемента постоянного напряжения, на его пластинах (электродах) накапливается электрическая энергия, при приложении нагрузки — происходит ее расходование. Причем протекает такая реакция на протяжении большого количества циклов заряда/разряда. Как правило, возможное количество перезарядок зависит от типа аккумуляторного элемента, но в среднем, современный аккумулятор способен обеспечить 300–1000 полных циклов.

Работоспособным считается аккумулятор, остаточная емкость которого составляет 70–80 % от начальной. Элементы с меньшими показателями остаточной емкости считаются непригодными для дальнейшей эксплуатации, поскольку не могут обеспечить расчетную автономность.

Какого бы типа не был аккумулятор, костяк конструкции и основной принцип действия у них остается неизменным. В каждом аккумуляторе есть два электрода (положительный и отрицательный, иначе именуемые анод и катод), погруженные в специальную среду — электролит, являющуюся прекрасным «поставщиком» ионов вследствие электролитической диссоциации.

Ион — атом или молекула, несущая на себе электрический заряд. Если ион положительно заряжен — его называют катион, если отрицательно — анион.

В зависимости от используемого материала электродов и применяемого типа электролита существуют различные вариации аккумуляторных элементов, каждый из которых имеет свои конструкционные и эксплуатационные особенности. Ниже поговорим о наиболее распространенных типах аккумуляторов, сферах их применения и особенностях эксплуатации.

Свинцовые аккумуляторы

Несмотря на преклонный возраст технологии, свинцовые аккумуляторы до сих пор успешно применяются в системах резервного питания, автомобильном транспорте, системах аккумулирования возобновляемых источников энергии (солнечная и ветряная энергетика, гидроэнергетика и т. д.).

Как видно из названия, в качестве основного материала, из которого изготавливают электроды, выступает свинец. Точнее, для производства положительных электродов — просто свинец, а для изготовления отрицательных электродов — оксид свинца. В качестве электролита, как правило, выступает раствор серной кислоты.

Существует большое количество конструкций свинцового аккумулятора, направленных на улучшение его эксплуатационных характеристик. Поскольку свинец сам по себе достаточно мягкий металл с невысокой физической прочностью, в чистом виде он слабо противостоит вибрационным нагрузкам, поэтому для использования аккумуляторов, например, в транспорте, в сплав свинца добавляют кальций, делающий структуру металла более прочной.

Для использования свинцового аккумулятора в источниках бесперебойного питания, дабы не допустить контакт пользователя с кислотой, исключить необходимость обслуживания, а также не создавать условия для взрыва водорода, выделяемого из АКБ, при ее заряде, используют свинцовые аккумуляторы определенного типа. Такими аккумуляторами являются источники питания типа AGM (Absorbent Glass Mat), в которых абсорбированным электролитом (не жидким) пропитан специальный пористый мат из стекловолокна.

Довольно часто свинцовые аккумуляторы, выполненные по технологии AGM, ошибочно называют гелевыми. На самом деле это не так. Гелевые аккумуляторы — отдельная ветвь развития свинцовых источников питания.

Аккумуляторы, электролитом в которых выступает раствор серной кислоты в желеобразном состоянии, называются гелевыми. Они рассчитаны на медленную отдачу энергии, поэтому основная область их применения — использование в инертных системах накопления и расходования электроэнергии (солнечная энергетика, питание моторов кресел для инвалидов, гольф-каров и т. д.).

К неоспоримым преимуществам свинцовых аккумуляторов относятся их невысокая стоимость и возможность работы в широком диапазоне температур окружающей среды (от — 40 до + 40 ° С).

Один свинцовый аккумуляторный элемент выдает напряжение порядка 2 В и способен выдать удельной энергии из расчета 30–60 Вт*ч с 1 кг массы, что в сравнении с другими типами — достаточно мало. Такие аккумуляторы имеют высокие значения саморазряда, а их глубокий разряд приводит к разрушению и осыпанию пластин электродов и безвозвратной порче аккумулятора.

Никель-кадмиевые аккумуляторы

Следующим типом аккумуляторных элементов, активно использующихся во многих сферах, являются никель-кадмиевые аккумуляторы (NiCd). Их можно встретить в детских игрушках, пультах управления, фонариках, ручном аккумуляторном электроинструменте и т. д.

Конструкция элемента не претерпела изменений, только в качестве материала для изготовления электродов используются никель и кадмий, а точнее гидраты закиси этих металлов. В качестве электролита применяют гидроксид калия. Один элемент на основе этих металлов может выдать напряжение 1,2–1,35 В, а значение удельной энергии находится в диапазоне 40–80 Вт*ч/кг.

Никель-кадмиевые аккумуляторы — одни из самых морозоустойчивых. Они работают без существенной потери своей емкости при температурах, близких к –50 ° С, к тому же, абсолютно не боятся глубокого разряда, и после цикла зарядки полностью восстанавливают свои эксплуатационные характеристики.

Хранить NiCd аккумуляторы рекомендуется полностью разряженными.

К отрицательным моментам относят их малую удельную емкость, высокий саморазряд, длительное время зарядки (восполнять энергию нужно малыми зарядными токами) и ярко выраженный «эффект памяти».

Чтобы не испортить аккумулятор, его необходимо заряжать только после полного разряда! Пренебрежение этим правилом повлечет быструю потерю емкости и выход элемента из строя.

Заряжают NiCd-элементы малыми зарядными токами, значения которых составляет порядка 10 % от емкости аккумулятора.

Никель-металлогидридные аккумуляторы

Логическим продолжением никель-кадмиевых аккумуляторов стали никель-металлогидридные (NiMH) элементы питания. В них учтены и практически устранены недостатки предшественников. Аккумуляторы при тех же массогабаритных показателях имеют большую в 2–3 раза емкость, обладают высокой надежностью, с легкостью переносят глубокий разряд и перезаряд, менее подвержены эффекту памяти.

Немаловажную роль в популяризации и широком распространении NiMH элементов сыграл тот факт, что они не содержат в своем составе кадмия, очень вредного для окружающей среды металла. Следовательно, с повестки дня снимаются вопросы правильного хранения и утилизации таких элементов.

Для производства анода используют гидрид никеля с лантаном или литием — так называемый металлогидридный электрод. В качестве катода — оксид никеля. Электролитом выступает соединение гидроксида калия.

Заряжают никель-металлогидридные аккумуляторы большими (в сравнении с NiCd-элементами) токами, величины которых составляют порядка 20–25 % от емкости аккумулятора, но очень важно контролировать температуру элемента во время заряда. Если она превышает 45 °С, нужно немедленно прервать процесс зарядки, в противном случае существует риск порчи элемента.

Зарядку для NiMH-аккумуляторов можно использовать в паре с NiCd-элементами. Обратная совместимость недопустима! Алгоритмы зарядки никель-кадмия более примитивны, они могут причинить вред NiMH-элементу.

Никель-металлогидридные аккумуляторы хранят полностью заряженными. Поскольку этому типу элементов присущ высокий саморазряд, для сохранения работоспособности элемента его нужно периодически подвергать полному циклу разряда/заряда.

Никель-металлогидридные аккумуляторы используют в тех же сферах, что и никель-кадмиевые, однако, благодаря повышенной емкости, их охотно применяют в фототехнике, использующей для питания элементы типа АА и ААА.

NiMH элементы — самые морозоустойчивые. Они без проблем переносят эксплуатацию при экстремально низких температурах, достигающих -60 °С. По этой причине их довольно успешно применяют в электроинструменте, используемом при выполнении работ на открытом воздухе в зимнее время.

Один элемент генерирует 1,2–1,25 в ЭДС, а его удельная энергия составляет 60–75 Вт*ч/кг. Теоретический расчетный «потолок» этого параметра находится на уровне 300 Вт*ч/кг, но видимо технологии производства NiMH-элементов, еще не до конца совершенны.

Литий-ионные аккумуляторы

Современные мобильные устройства уже сложно представить без литий-ионных аккумуляторов. Именно их разработка дала мощный толчок к развитию легких и миниатюрных решений источников питания, и, как следствие, миниатюризации всего сегмента мобильных гаджетов.

Сильными сторонами Li-ion являются высокая плотность аккумулируемой энергии, ее удельное значение, в большинстве случаев, составляет солидные 280 Вт*ч/кг, недостижимые при использовании аккумуляторов другого типа. Именно по этой причине Li-ion аккумуляторы используются не только для питания персональных гаджетов, но и для приведения в движение различных самокатов, велосипедов с электродвигателем и даже автомобилей.

Справедливости ради следует сказать, что «литий-ионный аккумулятор» — это обобщенное название целой группы электрохимических элементов, переносчиком заряда в которых выступают ионы лития. Разница заключается в составе материала катода и типе электролита.

Наибольшее распространение в бытовом сегменте получили литий-полимерные аккумуляторы, в которых в качестве электролита используется специальный твердый полимер, а катодный и анодный материал нанесены на тонкие слои алюминиевой и медной фольги соответственно. Такое конструктивное решение позволяет производить аккумуляторы любой формы и размера, изящно «вписывая» их в разрабатываемые устройства.

Существенный недостаток твердого полимера — его плохая проводимость при нормальной температуре окружающей среды (+ 25 °С). Наилучшие показатели достигаются при увеличении температуры до + 60 °С, а это уже опасно с точки зрения обычного использования. Поэтому производители идут на небольшие ухищрения, добавляя к полимеру электролит в жидком или желеобразном состоянии.

Существенное отличие конструкции литий-ионных аккумуляторов от традиционной конструкции заключается в обязательном наличии разделительного сепаратора, исключающего свободное перемещение ионов лития, в моменты, когда аккумулятор не используется.

Другой элемент, который должен обязательно присутствовать в схеме аккумулятора — BMS-контроллер (Battery Management System), отвечающий за корректную и сбалансированную зарядку ячеек аккумулятора.

Li-ion аккумуляторы при высокой удельной емкости обладают малым весом. Для их зарядки нужно не так уж много времени. У них практически отсутствует эффект памяти и саморазряд. К аккумуляторам литий-ионного типа не предъявляется особых требований к соблюдению циклов заряда/разряда. Заряжать их можно в любое удобное время, не привязываясь к величине остаточного заряда элемента. Хранить Li-ion батареи рекомендуется наполовину заряженными.

Самым существенным недостатком литий-ионного элемента является его категорическое «нежелание» полноценно работать при отрицательных температурах. Эксплуатация литиевого элемента на морозе очень быстро приблизит его выход из строя.

Источник



Литий-ионный аккумулятор — типы и характеристики, принцип работы

Литий-ионный аккумулятор – описание, история создания

Литий-ионный аккумулятор – источник тока, основанный на преобразовании химических реакций, происходящих внутри источника, в электрическую энергию. Данный тип батареи наиболее распространён в современной жизни, в большинстве своём из-за повсеместного использования в электронике: сотовых телефонах, цифровых фотоаппаратах, ноутбуках и так далее. Кроме этого, литиевые аккумуляторы ставят в электромобили.

Первое упоминание современных литиевых аккумуляторных батарей относится к 70-м годам XX века и связано с именем Майкла Стэнли Уиттингема. Будучи химиком в нефтяной компании «Exon», он создал источник тока, в котором в качестве анода использовался сульфид титана, а катод был литиевым. Первая батарея обладала напряжением 2,3 Вольт и способностью перезаряжаться, однако была пожароопасной и ядовитой. При взрыве, который мог случиться внезапно, литий вступал в контакт с воздухом и горел, а дисфульд титана выделял сероводород, вдыхание которого как минимум неприятно. Помимо этого, титан обладает и всегда обладал высокой стоимостью, и из-за всех этих факторов проект Уиттенгема был закрыт.

Читайте также:  Аккумуляторы для шуруповертов Интерскол 12 В NiCd 1 5 Ач в Екатеринбурге

Литий-ионная батарея, несмотря на свои недостатки, казалась достаточно привлекательной для продолжения развития, однако требовалась замена анодного материала, чем в 1978 году занялся Джон Гуденаф. Спустя некоторое время он обнаружил, что кобальтит лития (оксид лития-кобальта) обладает лучшими характеристиками, касающимися безопасности использования, а также напряжением, достигающим 4 Вольта. Однако использование лития в качестве катодного материала становилось причиной короткого замыкания аккумулятора. В 1980 году Рашид Язами указал на графит и назвал его наиболее подходящим в качестве анода материалом.

Однако потребовалось ещё одиннадцать лет, чтобы созданная и усовершенствованная батарея появилась в продаже под брендом компании «Sony».

СПРАВКА: Разработчик коммерческой версии аккумулятора Акиро Ёсино, а также Уиттенгем и Гуденаф в 2019 году получили Нобелевскую премию в области химии за равноценный вклад в создание литиево ионных аккумуляторов.

Принцип действия

Работа литионных аккумуляторов основана на электрохимическом потенциале, суть которого заключается в способности металлов отдавать отрицательные заряды. При подключении электрической цепи на аноде источника тока происходит химическая реакция, сопровождаемая образованием на его поверхности свободных электронов. По законам физики освобождённые электроны стремятся к положительной стороне – катоду, чтобы восстановить баланс, однако от движения их удерживает электролит, находящийся между анодом и катодом. Тем самым отрицательные заряды вынуждены двигаться к положительным «в обход» – через всю электрическую цепь, создавая ток.

Положительные ионы, образовавшиеся на стороне анода после «побега» электронов, проходят через электролит к катоду, чтобы удовлетворить потребность в отрицательных зарядах. В момент, когда все электроны переместятся на отрицательный электрод, аккумулятор будет разряжен.

Процесс зарядки запускает электрическую энергию в цепь, тем самым запуская в батарее обратную реакцию – скопление электронов на аноде. После полного перезаряда батарейки её можно заново подключать к цепи.

ВНИМАНИЕ: даже находясь в режиме ожидания, аккумуляторы теряют часть заряда. При этом они обладают такой характеристикой как старение – постепенно приходящая неспособность удерживать первоначальное количество заряда.

Устройство li-ion аккумулятора

В li-ion аккумуляторах в качестве отрицательного электрода служит алюминиевая фольга с нанесённым поверх слоем оксида лития. Анодом выступает медная фольга, и на её поверхность наносится графит. Между электродами располагается пористый разделитель, пропитанный электролитом. Все компоненты ради уменьшения занимаемого ими объёма сворачиваются в цилиндр или в пакет и помещаются в полностью герметичный корпус. При этом анод и катод присоединяются к токоснимающим клеммам. Герметичность конструкции обуславливается недопустимостью вытекания электролита. Кроме этого нельзя, чтобы внутрь батареи попали пары воды или кислорода, иначе произойдёт реакция между попавшим веществом и электролитом или электродами, и аккумулятор выйдет из строя.

В батарейку в соображениях безопасности могут быть включены специальные элементы. Например, устройство, которое увеличит сопротивление аккумулятора при положительном температурном коэффициенте. А также устройство, которое в случае превышения давления газа допустимых значений разорвёт связь между катодом и положительной клеммой. Иногда корпус батареи может быть оснащён клапаном предохранения, основной задачей которого является сброс внутреннего давления в случае аварийной ситуации или нарушения эксплуатационных условий.

Некоторые особо важные источники таки могут обладать внешней электронной защитой, которая не позволяет перегреть или перезарядить батарейку, а также исключает возможность короткого замыкания.

По форме корпуса li-ion аккумуляторы делятся на цилиндрические и призматические, первые из которых изготавливаются путём сворачивания слоёв, из которых состоит батарея. Призматический тип аккумулятора li-ion, численно превосходящий из-за применения в ноутбуках и мобильных телефонах, создаётся путём плотного складывания пластин друг на друга.

Характеристики литиевых аккумуляторов

ИНТЕРЕСНО: собственные удельные характеристики обеспечили описываемым батареям лидирующие позиции среди всех выпускаемых химических источников тока.

Рабочее напряжение

Минимальное значение напряжения составляет 2,2-2,5 Вольт, а максимальное не превышает 4,25-4,35 Вольт. На данную характеристику в значительной степени влияет материал, используемый для электродов.

Ёмкость

На свойство батареи хранить заряд непосредственно влияет ток и температура, которая возникает при разряде. Вообще максимальная ёмкость аккумуляторов варьируется в широком диапазоне и зависит от типоразмера. Например, в наиболее распространённой батарее 18650 ёмкость обычно находится в пределах от 1000 до 3600 миллиампер-час.

СПРАВКА: 14500 аккумулятор, размеры которого сопоставимы с пальчиковой батарейкой (АА), также популярен среди пользователей и обладает номинальной ёмкостью 900 микроампер-час.

В общем, под ёмкостью подразумевается количество ионов лития, способных достигнуть анода или катода. Со временем после многочисленных зарядок электроды теряют свои свойства и могут вместить всё меньшее число зарядов, а аккумулятор тем временем не способен удерживать прежнее их количество. В результате батарея устаревает и постепенно утрачивает основополагающую функцию.

Рабочая температура

Предельные значения температуры находятся в диапазоне от -20°С до +50°С, однако работать в пограничных режимах аккумулятор долго не сможет, это скажется на его способности запасать энергию. Оптимальная температура для функционирования составляет примерно 20°С, а лучшие значения для хранения – от 0 до 10°С. При этом уровень заряда 30-50% считается наиболее щадящим для ёмкости при длительном хранении.

ВНИМАНИЕ: если температура упадёт до +4°С объём вырабатываемой батареей энергии уменьшится на 5-7% в соответствии с максимальным значением. Более низкие значения приведут к потери 40-50% ёмкости и преждевременному исчерпанию ресурса.

Саморазряд

Данная характеристика варьируется от 6% до 10% в год.

Количество циклов заряд-разряд

Батарея литиевая не имеет эффекта памяти, а срок её годности рассчитан в зависимости от количества циклов полной разрядки.

Процент оставшегося заряда, % Количество циклов зарядки
500
50 1500
75 2500
90 4700

Так, для увеличения срока службы аккумулятора стоит чаще его заряжать.

Разновидности аккумуляторов

Наиболее распространены следующие виды литий-ионных батарей:

  • Литий-кобальтовая. Популярный тип в ноутбуках, смартфонах и цифровых камерах. В состав входит катод из кобальтового оксида и графитовый анод. К преимуществам относят высокий показатель удельной энергоёмкости, а к недостаткам: низкий срок годности, ограниченную нагрузку и невысокую термическую стабильность.
  • Литий-маргенцевая. Основная область применения – электроинструменты, медицинское оборудование и электрические силовые устройства. Катод представляет собой литий-марганцевую шпинель, обеспечивающей низкое сопротивление.
  • Литий-никель-марганец-кобальт-оксидная. Сочетание металлов, входящих в состав, позволяет использовать сильные стороны каждого элемента. Применяется как в частных областях, так и в более крупных – промышленных, например, в системах безопасности и аварийного освещения.
  • Литий-железно-фосфатная. Популярный вариант для стационарных специализированных устройств. К преимуществам относят стойкость к неправильным условиям эксплуатации, высокую безопасность и термическую стабильность, а к минусам причисляют малое значение ёмкости.
  • Литий-никель-кобальт-алюминий-оксидная. Дороговизна оправдывается долговечностью и хорошими показателями энергоёмкости. Используют в промышленных целях и медицинском оборудовании.
  • Литий-титановая. Можно встретить в сфере уличного освещения и автомобильных агрегатах. Дорогие и обладают низкой удельной энергоёмкостью, однако имеют долгий срок годности, работают в широком температурном диапазоне, производительны и безопасны.

Особенности хранения и утилизации

Хранить li-ion аккумуляторы необходимо в следующих условиях:

  • Место хранения должно быть сухим и прохладным, причём батарейку следует предварительно извлечь из оборудования.
  • Оптимальная температура должна находиться в диапазоне от +1°С до +25°С. При этом допускается хранение в холодильнике, но сначала аккумулятор нужно обернуть непромокаемым и не пропускающим влагу материалом.
  • Заряд батарейки следует сохранить в районе 40%, это позволит избежать падения напряжения при саморазряде ниже допустимого.

Источник

Типы литий-ионных аккумуляторов

Типы литий-ионных аккумуляторов

Статья обновлена: 2020-12-11

В последнее время можно заметить тенденцию того, как разновидности литиевых аккумуляторов стремительно пополняются новыми экземплярами, а их численность уже переваливает за десяток.

Каждый из представленных на рынке типоразмеров являет собой комбинацию лития и вспомогательных химических элементов, дающих название источникам питания. Основой таких изделий является литий, поэтому они имеют общие технические характеристики, хотя и отличий здесь немало, а зависят они от вспомогательных химических материалов, имеющих различные свойства, непосредственно влияющие на функциональные возможности накопителей.

Li-ion

Из материалов нашей статьи вы узнаете, какие типы современных аккумуляторов Li-ion существуют на рынке электроники, и где они используются чаще всего, но для начала стоит разобраться с устройством и принципом функционирования классических образцов литиевых элементов питания.

Итак, перезаряжаемые литий ионные аккумуляторы – это популярные накопители, в которых при разрядке происходит перемещение ионов лития от отрицательно заряженного электрода к положительному и в обратном направлении в момент их подзарядки.

Данный тип аккумуляторов часто встречается в быту и активно применяется для обеспечения работы портативных электронных устройств, и все благодаря отличной энергетической плотности и отсутствию эффекта памяти.

Li-ion характеризуется медленной разрядкой в режиме ожидания, так как демонстрирует низкий саморазряд. Данная серия аккумуляторов может выпускаться в форме цилиндра или призмы. Высокая плотность энергии в комбинации с малым весом и компактными габаритами, а также длительным функциональным циклом выводит литий-ионные элементы питания в настоящие лидеры.

В качестве примера предлагаем рассмотреть типы литиевых аккумуляторов 18650, которые с каждым днем становятся все более популярными. Они также сопровождаются маркировкой 168А, а по своей форме напоминают привычные пальчиковые АА батарейки, только большего размера.

Проблема быстрой потери номинальной емкости в процессе эксплуатации решается путем встраивания электросхемы, ограничивающей заряд, разряд и нагрузку на элемент. Подобные накопители применяются там, где требуется большая емкость для обеспечения питания мощных приборов. Из таких элементов обычно собирают АКБ для портативной компьютерной техники.

Литий-титановые аккумуляторы являются одной из новейших разработок в категории литий-ионных источников питания. Основное их преимущество заключается в длительном эксплуатационном периоде.

Данные образцы отличаются высокой степенью безопасности и устойчивостью перед негативными факторами. Их энергетическая плотность ниже, нежели у других типов литиевых накопителей, зато скорость зарядки здесь в десятки раз выше.

Такие аккумуляторы чаще всего устанавливают на электрический транспорт, а также ими комплектуют оборудование медицинского назначения.

Максимальная безопасность использования в данном случае объясняется применением особой технологии, основанной на использовании нанокристаллов на аноде. Из недостатков следует отметить сравнительно низкое среднее напряжение, нежели у других аккумуляторов.

Li-Pol

Li-Polymer аккумуляторы характеризуются большей энергетической емкостью, связующим при этом выступает полимер. Такие модели, имеющие форму призмы или цилиндра, демонстрируют стабильную работу в условиях высоких температур, к тому же они поддерживают высокие тока разряда.

К их преимуществам можно отнести широкий спектр размеров ячеек, что позволяет пользователям подбирать аккумулятор необходимой емкости для определенных целей. Чаще всего Li Pol моделями снабжаются всевозможные мобильные устройства, компьютерная техника, цифровое оборудование и прочие девайсы аналогичного назначения.

LiFePO4

Литий фосфатные аккумуляторы отлично зарекомендовали себя там, где наблюдаются высокие токи разрядки, и демонстрируют длительный срок службы, а также характеризуются высокой безопасностью. Поэтому ими комплектуют электротранспорт, строительный электроинструмент, компьютерную технику, источники бесперебойного питания и даже военную технику.

Особо хотелось бы отметить их низкое воздействие на окружающую среду, что очень актуально в настоящее время. По мнению специалистов, за такими батареями будущее, особенно в сегменте питания автономных электронных устройств.

Li-SO2

Такие типы литий ионных батарей имеют цилиндрическую форму и отличаются хорошей энергоемкостью. Они устойчивы к разряду на высокой мощности, поэтому данные элементы активно устанавливают на космическое и военное оборудование. Аккумуляторы на основе литий диоксида серы, снабженные литиевым анодом, имеют среднее напряжение в 2,9 В.

Li-MnO2

Литий-диоксид марганцевые батареи отличаются наличием твердого катода, погруженного в органический электролит, илегкого литиевого анода.

Большая емкость, высокая разрядка и длительный срок эксплуатации – вот основные преимущества данного типа источника питания. Данные элементы чаще всего устанавливают на ИБП, пожарные и охранные сигнализации, медицинское оборудование и цифровую технику.

Li-SOCL2

По аналогии с предыдущими образцами, хлорид тионил литиевые батареи комплектуются литиевым анодом и жидким катодом, включающим в свой состав пористый токосъемник, заполненный SOCl2.

Основная сфера использования данного типа накопителей – автомобилестроение, военная и космическая отрасль. Также их устанавливают на оборудование медицинского назначения, и все благодаря широкому диапазону рабочих температур (-60 — + 150С).Приведем самые распространенные размеры Li-ion аккумуляторов в таблице:

Таблица размеров Li-ion аккумуляторов

Тип

Обозначение

Типоразмеры

Схожие типоразмеры

XX – указание диаметра в мм,

YY – значение длины в мм,

0 – отражает исполнение в виде цилиндра

1/2 AAA (Ø соответствует ААА, но на половину длины)

Источник