Меню

Модульный блок питания описание оборудования и отличие от обычного БП

Модульный блок питания: описание оборудования и отличие от обычного БП

Модульный блок питания для компьютера представляет собой блок, на котором отсутствуют встроенные провода. Далее будет представлено описание модульного блока и его отличие от обыкновенного питания. На данный момент имеется три разновидности БП — это распространенные стандартные, полумодульные и модульные блоки питания.

Стандартный блок питания

Стандартные блоки питания являются самыми распространенными: их можно увидеть практически в любом магазине. Они используются как в стационарных компьютерах, так и в профильных игровых. Они нашли широкое применение даже в серверных системах. Минимальная мощность такого блока питания составляет 350 ватт, чего вполне достаточно для работы с офисным оборудованием. Однако его размеры больше подходят для корпусов формата ATX, то есть самого большого размера.

Кабели для стандартного блока питания создавались таким образом, чтобы их невозможно было случайно вырвать из блока. Именно поэтому, если разобрать такой блок питания, можно увидеть, что внутри они крепко спаяны. Минус такого блока в том, что некоторые из кабелей могут оказаться бесполезными и будут занимать место в корпусе, создавая путаницу из проводов.

Полумодульный блок питания

У этой разновидности блоков питания немного другое строение и расположение кабелей. Встроенные провода предназначены только для самого необходимого — материнской платы, процессора и видеокарты.

Другие кабели, которые могут пригодиться, есть в комплекте, но они присоединяются уже отдельно, давая возможность экономить место в корпусе.

Плюсы такого блока питания состоят в том, что подключение остальных кабелей осуществляется через определенные разъемы в блоке, что существенно улучшает работоспособность системы охлаждения.

Отрицательная сторона таится не в самих блоках, а в местах продажи данного товара. Дело в том, что многие продавцы и владельцы таких модульных блоков питания представляют их, как полноценные модульные, что приводит к введению потенциальных клиентов в заблуждение.

Источник

Блоки питания, маленькие и очень маленькие

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Блоки питания бывают не только на большую мощность, а и совсем маленькие, но от этого не менее полезные.

Сегодня у меня на ‘операционном столе’ четыре представителя этого класса блоков питания, но испытания у них будут такие же как всегда.

Иногда возникает ситуация, когда необходим совсем маломощный блок питания. Например питания совсем маломощного устройства, датчика, ардуино подобного устройства или тому подобного.

Можно конечно поставить большой блок питания, но тогда устройство заметно вырастает в габаритах, потому применяют малогабаритные и соответственно маломощные блоки питания.

Впрочем тесты будут стандартные, как и сам стиль обзора.

Все платы были упакованы в герметичные антистатические пакетики, три одноразовых, а один с защелкой.

Что странно, дата отправки стоит почти на всех одна и та же, но пришли они с разницей в полтора месяца О_о

Для начала самый маломощный представитель.

Сразу сделаю общий комментарий. В магазине была предоставлена не вся информация, указанная ниже найдена на других сайтах, но вполне реальна.

Заявлены следующие характеристики:

Входное напряжение — 110

Выходное напряжение — 12V

Выходной ток — 83mA

Мощность нагрузки — 1W

Точность поддержания выходного напряжения +/-10%

Уровень пульсаций — не более 100мВ

Защита от КЗ и перегрузки выхода с автовосстановлением.

Размеры платы — 26 х 24 х 12мм без выводов, с выводами 26 х 33 х 12мм

расстояние между выводами 220В — 5мм, 12В — 2.5мм, но между входом и выходом расстояние не кратно 2.5мм и составляет 14.3мм

На плате отсутствует предохранитель и входной и выходной фильтры, конструкция предельно простая.

Входной конденсатор 2.2 мкФ (реально 1.9), выходной — 220мкФ (реально 183). Емкость достаточна для нормальной работы.

ШИМ контроллер OB2535, максимальная мощность 5 Ватт.

Схема данного блока питания.

Как я выше писал, это самый простой блок питания из четырех, он не имеет большинства узлов, свойственных большим БП, сделано это в угоду уменьшения размеров.

В данном блоке питания нет привычной цепи обратной связи с оптроном, на таких маленьких мощностях это вполне оправдано. Но на самом деле измерение выходного напряжения есть, хоть и косвенное. Измерение происходит на обмотке питания микросхемы.

Микросхема может работать в двух режимах — стабилизатора напряжения и стабилизатора тока.

Под вторым номером идет немного более мощный блок питания.

Если первый был на одно из самых распространенных напряжений, то этот имеет на выходе гораздо более редкое напряжение в 24 Вольта. Хотя судя по маркировке, есть версия и на 12 Вольт.

Входное напряжение — 110

Выходное напряжение — 24V (существует версия 12 В 400мА и 3.3В 500мА)

Выходной ток — 200mA

Мощность нагрузки — 4,8W

Уровень пульсаций — не более 100мВ

Размеры платы — 41 х 15 х 17мм

Что интересно, трансформатор на этой плате стоит меньше по габаритам чем на предыдущей, но мощность заявлена заметно больше.

ШИМ контроллер со встроенным высоковольтным транзистором, наименование — THX208, заявленная в даташите мощность 4 Ватта при входном диапазоне 85

264V. Негусто, так как заявленная мощность БП — 4.8 Ватта.

Входной фильтр и предохранитель отсутствуют, вместо предохранителя стоит перемычка размера 0805. Выходной фильтр также не наблюдается.

Входной конденсатор 4.7мкФ (реально 4.2), выходной 220мкФ (реально 242). Входной совсем впритык, выходной соответствует выходному току.

Третий товарищ смог меня удивить уже на этапе внешнего осмотра, но об этом чуть позже.

Этот БП имеет довольно распространенное напряжение в 5 Вольт. в принципе я 5 Вольт БП и выбирал для обзора именно потому, что они могут быть довольно востребованными, так как сейчас это напряжение используется во многих местах.

Входное напряжение — AC 85V — 265V

Выходное напряжение — 5V

Выходной ток — 1000mA

Мощность нагрузки — 5W

Точность поддержания выходного напряжения +/-0.1V

Уровень пульсаций — не более 150мВ

Размеры платы — 52 х 24 х 18мм

Читайте также:  Блоки питания для ноутбуков в Набережных Челнах

У этого блока питания отсутствует предохранитель (вместо него перемычка 0 Ом), но уже есть входной и выходной фильтр и резистор ограничивающий пусковой ток.

В блоке питания применен ШИМ контроллер AP8012, который имеет встроенный высоковольтный транзистор. мощность данного ШИМ контроллера составляет 5 Ватт (для данного размера микросхемы и диапазона входного напряжения). Также впритык, но тесты покажут кто есть кто.

На этой плате уже присутствует помехоподавляющий конденсатор, причем Y1 класса, как и положено.

БП пришел с небольшим повреждением, на дросселе отломился кусочек пластмассы, так как он был в пакете, то скорее всего ‘постаралась’ почта.

Но удивило меня другое. Я обозревал кучу разных блоков питания, но варистор по входу вижу в них впервые (может во второй раз, не уверен), да еще в таком мелком БП. В мощных и более дорогих БП нет, а здесь поставили, предохранитель бы ему еще 🙁

Входной конденсатор емкостью 4.7мкФ (реально 4.2), выходные 2шт 1000мкФ 10В (реально 2х 1095). Присутствует выходной помехоподавляющий дроссель.

Печатная плата. Как и в прошлых блоках питания, здесь производитель также применил точные резисторы, радует 🙂

Пайка в целом нормальная, плата чистая.

Этот блок питания немного выбивается из общей картины, так как имеет мощность и габариты заметно больше чем у предыдущих, но меня неоднократно спрашивали про БП с такими характеристиками, поэтому я решил добавить к обзору и его.

Для начала характеристики:

Входное напряжение — AC 85V — 265V

Выходное напряжение — 5V

Выходной ток — 2000mA (кратковременный 2500мА)

Мощность нагрузки — 10W (макс 11 Ватт)

Точность поддержания выходного напряжения +/-0,1V

Размеры платы — 60 х 31 х 20мм

Первая плата из обозреваемых, на которой присутствует полноценный предохранитель.

Также установлен входной и выходной помехоподавляющие дроссели и термистор для ограничения пускового тока.

На этой плате установлен уже более мощный диод, также присутствует помехоподавляющий конденсатор Y1 класса (маркировка на фото не попала).

Входной конденсатор емкостью 15мкФ (реально 15.2) и выходные суммарной емкостью 2000мкФ (реально 2110). Емкость соответствует требуемой.

В этом БП уже применили маломощный ШИМ контроллер с внешним полевым транзистором, это обусловлено отчасти тем, что мощность Бп все таки больше чем у предыдущих.

Что интересно, в выходной цепи есть место под дополнительный резистор, включенный параллельно нижнему резистору делителя обратной связи. Устанавливая резистор на это место можно поднять выходное напряжение.

ШИМ контроллер я не опознал, но скорее всего это 63D12, ближайший аналог FAN6862

Так, внешне осмотрели, теперь пора бы перейти и к тестам.

В этот раз я буду использовать простенькую электронную нагрузку, так как не вижу смысла в применении мощной, тем более что она довольно сильно шумит, а тесты предполагали быть долгими.

Тестировать БП я буду в том же порядке, что и описывал выше, но методика тестирования будет немного отличаться от то, что я использовал в предыдущих обзорах.

Так как БП маленькие, то методика была такая:

Проверка в режиме ХХ (а точнее при токе в 20мА), после этого 15 минут тест с нагрузкой в 50%, измерение температур, тест с нагрузкой 100%, измерение температур.

Дальше повышение нагрузки пока не наступит одно из ограничений (перегрузка, перегрев или выход БП из строя).

Все результаты потом будут сведены в одну таблицу.

Итак первый БП, 12 Вольт 1 Ватт.

1. Ток нагрузки 20мА (для БП такой мощности тяжело назвать это режимом холостого хода).

2. Ток нагрузки 50мА, напряжение чуть поднялось, но в целом все нормально

1. Ток нагрузки 100мА, пульсации выросли до 80мВ, но в остальном изменений нет.

2. Ток нагрузки 150мА, пульсации 90мВ (заявлено макс 100), напряжение неизменно.

1. Ток нагрузки 200мА, пульсации 100мВ, напряжение 12.1.

2. Ток нагрузки 250мА, пульсации 100мВ, напряжение 12.1

Если честно, то этот БП меня не просто удивил. при такой простоте схемотехники и таких выходных параметрах он меня поразил.

БП сдался только при токе более 250мА, это в 3 раза больше заявленного тока, при этом БП был холодным и пульсации не превышали заявленные.

При превышении тока в 250мА напряжение на выходе падает резко, срабатывает защита от перегрузки, при уменьшении тока напряжение восстанавливается.

Второй БП, 24 Вольт 200мА, 4.8 Ватта

1. Ток нагрузки 20мА. напряжение немного занижено и составило 23.6 Вольта

2. Ток нагрузки 100мА, пульсации 70мВ. напряжение неизменно

1. Ток нагрузки 200мА, это 100% мощности, пульсации 80-90мВ, но вполне в пределах допустимого, особенно с учетом того, что фильтра по выходу БП нет.

2. Ток нагрузки 260мА. это предельный ток для этого БП.

Третий БП. 5 Вольт, 1 Ампер, 5 Ватт.

Этот БП имеет на выходе помехоподавляющий дроссель, что должно положительно сказаться на уровне пульсаций.

1. Ток нагрузки 20мА, напряжение 4.98 Вольта, пульсации минимальны.

2. Ток нагрузки 500мА, напряжение немного снизилось. Часть напряжения упала на проводах (в этот раз я измерял уже после проводов), в таблице напряжение будет скорректировано с учетом этой погрешности измерения.

1. Ток нагрузки 1 Ампер, 100% мощности, все параметры в норме.

2. Ток нагрузки 1.5 Ампера. Выходное напряжение опустилось чуть ниже заявленного значения, но БП работает с полуторакратной перегрузкой, так что все нормально.

Пульсации немного выросли, но в данном случае начала сказываться низкая емкость входного электролита. Это видно по осциллограмме, пульсации не ВЧ, а НЧ. Если немного увеличить емкость входного конденсатора, то даже при таком токе будет нормально.

Четвертый БП, 5 Вольт, 2 Ампера, 10 Ватт.

1. Ток нагрузки 20мА (вот для этого БП это точно режим холостого хода).

2. Ток нагрузки 1 Ампер, напряжение предсказуемо ‘просело’, В этом БП почему то поставили слишком маленький выходной дроссель, поэтому пульсации по выходу имеют вполне заметный уровень, в отличии от предыдущего ‘подопытного’, но пока не превышают 100мВ.

1. Ток нагрузки 2 Ампера, 100% мощности. Интересно, но уровень пульсаций уменьшился.

2. Ток нагрузки 2.5 Ампера, выходное напряжение и уровень пульсаций в пределах нормы.

Читайте также:  Зарядное устройство для Asus F5N Lite On AD 088

Но к этому БП есть небольшой замечание, в работе он издает небольшой ‘писк’ в диапазоне токов от 100мА до 250мА.

Тесты закончены. Теперь табличка с результатами тестирования, но для начала список причин прекращения теста соответственно номеру БП

1. БП ушел в защиту при токе 250мА с отключением выхода.

2. БП снизил выходное напряжение ниже предела допуска

3. Тест прекращен из-за высокой температуры ШИМ контроллера.

4. Тест прекращен из-за высокой температуры выходного диода.

Теперь можно делать какие то выводы.

Конструкция совсем простая, отсутствует предохранитель и фильтры, но БП который имеет трехкратную перегрузочную и такую высокую стабильность выходного напряжения уже достоин уважения. Предохранитель можно добавить, хотя с тем что БП явно разрабатывался для работы в составе какого нибудь устройства, то чаще он уже присутствует на основной плате.

БП вписался в заявленные параметры, но не имеет запаса по мощности, при нагрузке в 1.3 раза больше заявленной БП уходит в защиту, хотя запас по нагреву есть и большой. Также плохо что нет предохранителя 🙁

В штатном режиме работает отлично, уровень пульсаций самый низкий из протестированных БП, но не рекомендую использовать при токе более 1 Ампера (собственно больше никто и не обещал). из минусов — отсутствие предохранителя и хуже стабилизация выходного напряжения.

Четвертый БП.

Неплохая стабильность выходного напряжения, пульсации есть, но в пределах допустимого. Есть выходной и выходной фильтр, но выходной дроссель слабоват для БП такой мощности. Если в плане нагрева дроссель работает нормально, то из-за небольшой индуктивности Бп имеет заметный уровень пульсаций на выходе.

Общее по всем БП.

Все БП прошли тесты, одни лучше, другие хуже, но заявленным характеристикам соответствуют.

Удивили характеристики самого первого БП, при заявленной мощности в 1 Ватт выдать без проблем 3 Ватта. Этот БП точно в Китае делали?

Также удивило наличие правильных помехоподавляющих конденсаторов в 5 Вольт БП и наличие варистора в БП 5 Вольт 1 Ампер, их и на более мощные БП то не ставят, а здесь.

На этом вроде все, как всегда жду вопросов, уточнений и дополнений в комментариях, надеюсь что обзор были полезен.

Также попутно задам вопрос аудитории — обзоры каких блоков питания вам были бы интересны, напряжение, мощность, формфактор.

По возможности постараюсь заказать такие БП и сделать их обзоры.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Источник



Блок питания

Содержание

  1. Что такое блок питания
  2. Характеристики блока питания
  3. Тип выходного напряжения
  4. Выходное напряжение
  5. Выходная мощность
  6. Трансформаторный блок питания
  7. Импульсный блок питания
  8. Лабораторный блок питания
  9. Описание лабораторного блока питания
  10. Как применять в работе
  11. Где купить лабораторный блок питания

Что такое блок питания

Блок питания – это какой-либо узел радиоэлектронного устройства, который обеспечивает необходимым питанием какое-либо устройство. Все вы знаете, что для работы радиоэлектронных устройств нужно питание, которые они получают извне. То есть все радиоэлектронные устройства так или иначе потребляют электрический ток. Каждому радиоэлектронному устройству требуется конкретное напряжение и мощность, поэтому, блоки питания “заточены” именно под конкретное устройство. Именно поэтому встречается огромное множество различных блоков питания и для каждого устройства оно свое.

Характеристики блока питания

Итак, каждый отдельный блок питания обладает своими характеристиками и параметрами. Ниже перечислим их основные параметры.

Тип выходного напряжения

В основном радиоэлектронные устройства питаются переменным и постоянным током. Поэтому, блоки питания могут выдавать переменное или постоянное напряжение. В большинстве случаев используется именно постоянное напряжение.

К блокам питания с постоянным выходным напряжением можно отнести компьютерные блоки питания

а также различные зарядные устройства для ваших гаджетов.

К блокам питания с переменным напряжением можно отнести трансформаторы

А также инверторы. Инверторы – это устройства, которые из постоянного напряжения делают переменное напряжение.

Выходное напряжение

Блок питания выдает какое-либо определенное напряжение, которое требуется для какого-либо конкретного устройства. Поэтому, самый главный параметр – это напряжение в Вольтах, которое выдает блок питания.

Например, для зарядки наших смартфонов требуется блок питания с постоянным напряжение в 5 Вольт, а для того, чтобы горела автомобильная лампочка, нам потребуется блок питания с напряжением в 12 Вольт.

Выходная мощность

Каждый блок питания наряду с выходным напряжением также должен уметь выдавать в нагрузку и требуемую силу тока. Хочу напомнить, что мощность постоянного тока рассчитывается по формуле P=IU, где P – это мощность, I – сила тока, U – напряжение. Следовательно, мощный блок питания должен уметь выдавать и большую силу тока, если от этого потребует нагрузка. Рассчитать максимальную силу тока, которую способен выдавать такой блок в нагрузку, вы можете по формуле I=P/U. Но чаще всего силу тока пишут также на самой этикетке блока питания.

Те, кто занимается компьютерами, знают, что на самом компьютерном блоке питания на этикетке написана мощность, которую может выдать блок питания. Поэтому, геймеры берут очень мощный блок питания, так как железо мощного компьютера потребляет очень много электрической энергии.

Трансформаторный блок питания

Трансформаторный блок питания уже почти не используется в современной электронике, так как состоит из громоздкого трансформатора, что делает такой блок питания тяжелым и крупногабаритным. Схема трансформаторного блока питания до боли простая.

На такой схеме в давние времена собирались почти все блоки питания во всем мире. Такая схема отличалась своей надежностью и неприхотливостью. Здесь мы видим трансформатор, диодный мост и конденсатор. Как работает эта схема, я писал еще в этой статье.

На базе этой схемы можно собрать себе самый простой блок питания с регулировкой от 1,2 Вольта и до 37 Вольт и с выходной силой тока до 1,5 Ампер. Его я описывал еще в этой статье.

Источник

Все про компьютерные блоки питания на примере Silencer MK III 750 W

Сегодня в нашу тестовую лабораторию попала необычная «железка», точнее она-то вполне распространенная и популярная, но вот такого рода тесты мы еще не делали, поэтому не смогли отказаться от возможности рассказать больше о том, как они работают. Сегодня мы расскажем про компьютерные блоки питания вообще, и про Silencer MK III в частности.

Читайте также:  Зарядка для ноутбука Toshiba 19V 3 95A 75W 5 5x2 5мм

Про блоки питания

Что же должен делать блок питания компьютера? Очевидный ответ — питать все компоненты необходимыми напряжениями, преобразовывая 220 переменных вольт (в идеальном случае, в реальности бывает по-разному) в розетке в разные постоянные напряжения. Менее очевидный ответ — защищать компьютер от разных сюрпризов, к сожалению, не редких в наших электросетях. Совсем не очевидный ответ — участвовать в охлаждении компьютера, так как большой вентилятор блока питания играет свою роль в обеспечении нормальной циркуляции воздуха в корпусе.

Давайте по порядку. Какие именно напряжения нужны компьютеру? Стандарт ATX говорит нам, что блок питания должен обеспечивать выходные напряжения ±5, ±12, +3,3 Вольт, а также +5 Вольт дежурного режима (англ. standby). Стоит учитывать, что напряжения –5 и –12 Вольт являются «наследием прошлого» и часто не реализуются в современных БП. Как распределяются остальные напряжения в компьютере?

Большая часть напряжений (±5, ±12, +3,3 В) используется материнской платой. Наиболее мощные потребители (процессор, видеокарта, чипсет) питаются через вторичные преобразователи напряжения, которые размещаются на материнской плате и видеокарте.

Для жёстких дисков, оптических приводов, вентиляторов используются только напряжения +5 и +12 В. Помимо прочих плюсов, разделение питания на +5 и +12 В позволяет оптимизировать потери энергии на преобразователе блока питания.

Напряжение +3,3 В в БП часто формируется из +5 В, поэтому ограничение мощности на ±5 и +3,3 В — общее.

Прежде чем разбираться как все это работает в современных компьютерах, стоит сначала разобраться с «историей»: как работали блоки питания раньше?

Схема трансформаторного блока питания очень простая. Сначала напряжение понижается с помощью трансформатора, потом выпрямляется с помощью диодного моста, и наконец, пульсации сглаживаются фильтром (в приведенной выше схеме в его роли выступает конденсатор). Обычно, в реальности фильтр строится по более сложной схеме, мы не будем углубляться в эту сторону. К достоинствам трансформаторных блоков питания можно отнести простоту, надежность и отсутствие помех. Но, к сожалению, недостатки их перевешивают достоинства: большой вес, габариты и металлоемкость (размеры трансформатора очень сильно зависят от мощности), падение КПД (особенно при использовании продвинутых схем фильтрации), плохая устойчивость к изменению напряжения в сети. Как вы понимаете, с учетом последнего недостатка, использование таких блоков питания в компьютерах — просто невозможно.

На помощь приходят импульсные блоки питания.

В таких блоках питания напряжение сети сначала выпрямляется, потом это постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и заданной скважности, которые подаются либо на трансформатор (если используется гальваническая развязка), либо сразу на выходной фильтр низкой частоты. За счет использования тока высокой частоты, трансформатор можно делать заметно меньше, чем для обычного переменного тока 50 герц, кроме того, можно использовать ферритовый сердечник, а не трансформаторную сталь.

Для борьбы с изменением напряжения в сети используется механизм обратной связи, которая в зависимости от напряжения на выходе изменяет скважность входных сигналов, изменяя напряжение.

Достоинства импульсных блоков питания фактически строятся на инверсии недостатков трансформаторных. Они компактные и не тяжелые, они дешевле трансформаторных, их КПД заметно выше, лучше приспособлены к изменению напряжения в сети (вплоть до того, что есть ИБП работающие и от 110, и от 220 Вольт), позволяют реализовывать эффективные схемы защиты оборудования (про это ниже). Разумеется, не обошлось и без недостатков. Так как основная часть схемы работает от сети без гальванической развязки — ремонт таких блоков является занятием рисковым. Кроме того, такие блоки питания создают очень сильные высокочастотные помехи, что делает практически невозможным их использование, например, в аудиотехнике. Также такие блоки питания часто критичны к «недогрузке», то есть когда мощность нагрузки ниже минимальной, характеристики выходных напряжений могут отличаться от номинальных.

Какую же защиту могут обеспечить современные БП? Обычно разные виды защиты обозначаются такими аббревиатурами.

  • NLO — No-Load Operation, защита при работе в режиме «без нагрузки»
  • OVP — Over-Voltage Protection, защита от перенапряжения
  • UVP — Under-Voltage Protection, защита от пониженного напряжения
  • OLP/OPP — Overload Protection, защита от перегрузки
  • OTP — Overheating Protection, защита от перегрева
  • SCP — Short-Circuit Protection, защита от короткого замыкания
  • OCP — Over-Current Protection, защита от повышенного тока

Импульсные блоки питания позволяют сэкономить на очень многих деталях и узлах, без которых он продолжит работать, но первая же проблема с нагрузкой или входным напряжением приведет к фейерверку, не слабей тех, что запускаются каждый Новый год, а дальше в ход вступает лотерея — какие из узлов компьютера унесет за собой в могилу дешевый блок питания, и не станет ли он причиной пожара. На самом деле, блок питания, пожалуй, тот узел компьютера, на котором экономить стоит меньше всего, но про это чаще всего забывают.

Вооруженные этими теоретическими знаниями, перейдем к рассмотрению героя нашего сегодняшнего обзора.

Упаковка и комплект поставки

Блоки питания Silencer являются продукцией компании OCZ, точнее ее подразделения PC Power & Cooling, купленного в 2007 году (о покупках компании OCZ я уже писал в обзоре их SSD на AppleInsider, поэтому повторяться не буду). С момента покупки, это подразделение трудится над премиум-решениями в области питания компьютеров.

Очень примитивным, но зачастую действенным способом оценки качества блока питания можно считать оценку «на вес». Разумеется, это метод очень грубый, но в большинстве случаев действенный, так как хороший блок питания весить мало явно не должен: слишком много всего должно быть внутри. Silencer по этому критерию сразу проходит первую проверку: вес коробки превышает солидные 3 кг. Сама коробка оформлена с чувством вкуса: белый картон, минимум надписей на передней поверхности, основные детали сзади. Понятно, что упаковка — не основной критерий выбора для блока питания, но приятно, что даже этому уделяется внимание.

Источник