Бестрансформаторные Схемы Питания
Без трансформаторная Концепция Электропитания
Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки.
Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:
Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС.
Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.
Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.
Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.
Преимущества использования без трансформаторной схемы питания
Дешевизна и при этом эффективность схемы для маломощных устройств.
Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.
Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети
Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем.
Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.
Недостатки без трансформаторной схемы питания
Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций.
Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.
И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.
Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.
Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.
Как схема работает
1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА.
2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока .
3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC.
4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт.
5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.
Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:
Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты.
Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.
Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.
Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.
Источник
Мощный блок питания без трансформатора
Для питания от сети 220 вольт устройств небольшой мощности можно применять малогабаритные блоки питания без использования трансформаторов. Это позволяет удешевить конструкцию и значительно снизить её массу и габариты.
Как известно, конденсатор в цепи переменного тока обладает сопротивлением, которое зависит от частоты и называется реактивным. Используя это свойство, можно гасить переменное напряжение сети, причём мощность на конденсаторе при этом не выделяется и он не будет нагреваться как, например, резистор.
Ёмкость гасящего конденсатора (в микрофарадах) можно рассчитать по формуле:
где I — потребляемый ток нагрузки в амперах, U — напряжение сети в вольтах.
Если напряжения питания нагрузки невелико (до 20 вольт), можно воспользоваться упрощённой формулой:
С = 3200 I / Uc
Но следует иметь ввиду, что применять гасящий конденсатор в цепи выпрямителя можно только в том случае, если он собран по мостовой схеме (двухполупериодной) , так как через конденсатор должен проходить именно переменный ток. Конденсаторы можно использовать бумажные (типа МБМ, МБТ, МБГТ) или современные плёночные (например К76-3) на напряжение в 2-3 раза больше питающего напряжения (напряжения сети).
В качестве примера приводится схема бестрансформаторного блока питания 5 вольт/100 мА:
Резистор R1 ограничивает ток в момент включения (его можно уменьшить до 50 Ом), R2 разряжает конденсатор С1 после выключения устройства. Стабилитрон на напряжение 18-25 вольт защищает микросхему стабилизатора ИС1 от возможных бросков напряжения.
Благодарю за уделённое внимание.
Если статья была полезна, прошу ставить «палец-вверх» :-))
Источник
Схемы бестрансформаторного сетевого питания микроконтроллеров
Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.
Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.
Различают следующие разновидности бестрансформаторных блоков питания:
- с балластным резистором во входной цепи;
- с балластным конденсатором во входной цепи;
- с импульсным неизолированным AC/DC-преобразователем.
Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).
Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.
Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.
На Рис. 6.3, а. м показаны схемы бестрансформаторного питания с балластными резисторами и конденсаторами, а на Рис. 6.4, а. г — с микросхемами импульсных AC/DC-преобразователей.
Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):
а) диоды VD1. VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;
б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;
в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004. 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор СЗ устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;
г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;
Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):
д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1. 3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;
е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;
ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;
з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8. +5 В в каждом канале;
Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):
и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9. +12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1. 3 Вт;
к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;
л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;
м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1. CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.
Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:
а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;
б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;
в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;
т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.
Источник
Блок питания без трансформатора
Для питания от сети 220 вольт устройств небольшой мощности можно применять малогабаритные блоки питания без использования трансформаторов. Это позволяет удешевить конструкцию и значительно снизить её массу и габариты.
Как известно, конденсатор в цепи переменного тока обладает сопротивлением, которое зависит от частоты и называется реактивным. Используя это свойство, можно гасить переменное напряжение сети, причём мощность на конденсаторе при этом не выделяется и он не будет нагреваться как, например, резистор.
Ёмкость гасящего конденсатора (в микрофарадах) можно рассчитать по формуле:
где I — потребляемый ток нагрузки в амперах, U — напряжение сети в вольтах.
Если напряжения питания нагрузки невелико (до 20 вольт), можно воспользоваться упрощённой формулой:
С = 3200 I / Uc
Но следует иметь ввиду, что применять гасящий конденсатор в цепи выпрямителя можно только в том случае, если он собран по мостовой схеме (двухполупериодной) , так как через конденсатор должен проходить именно переменный ток. Конденсаторы можно использовать бумажные (типа МБМ, МБТ, МБГТ) или современные плёночные (например К76-3) на напряжение в 2-3 раза больше питающего напряжения (напряжения сети).
В качестве примера приводится схема бестрансформаторного блока питания 5 вольт/100 мА:
Резистор R1 ограничивает ток в момент включения (его можно уменьшить до 50 Ом), R2 разряжает конденсатор С1 после выключения устройства. Стабилитрон на напряжение 18-25 вольт защищает микросхему стабилизатора ИС1 от возможных бросков напряжения.
Благодарю за уделённое внимание.
Если статья была полезна, прошу ставить «палец-вверх» :-))
Источник