Меню

Опасность перезаряда и полного разряда

Простой контроллер заряда литиевых батарей

Это ещё одна статья о всем известной микросхеме TP4056, многим она уже полюбилась и была протестирована неоднократно армией радиолюбителей. Да и ко мне дошли слухи о чудодейственной микросхеме. Заказал у китайцев пять подопытных, стал думать гадать, как собрать — навесом или на платке. Тут самая обычная схема — несколько деталек и сама микросхема.

Схема на микросхеме TP4056

Тут мне под руку попали кусочки текстолита и решил собрать на печатной плате, но не все так просто. Картридж у меня выдохнулся от пары десятков перезаправок. Встал вопрос купить новый, но цена у него заоблачная, как для меня. Тогда есть только один выход, рисовать лаком для ногтей, но лака мне больше не дают, сказали, что лак покупался не для того, чтоб я тратил его на какие-то бляшки нет, это не опечатка, какие-то бляшки — да, не ожидал.

В общем сидел я и думал чем бы себя занять, вспомнил, что платки можно рисовать не только лаком, но и парафином и маркером, парафин не для меня, я только если на Пасху яйцо раскрасить могу, и то не очень. Но с маркером идея неплоха.

Сел за руль своего двух колёсного педального байка и отправился в магазин на поиски заветного перманентного маркера. Нашёл сразу если кому интересно такой маркер стоит 6 грн. Это на 29.02.2016

плата и маркер

Рисуем платку, мой метод такой: сделать метки канцелярской кнопкой на текстолите и соединить их маркером, как в детстве в журналах такая игра была.

Ладно, отклонился от темы, продолжаем. Травил в растворе медного купороса, могу сказать, что это наилучшее средство, я говорю конечно от своего лица — у каждого свои предпочтения, скажу лишь, что мне в нем нравится это цена, долговечность и конечно то, что он не пачкает все вокруг как хлорное железо.

Простой контроллер заряда литиевых батарей своими руками - плата

Припаиваем наши деталюхи: пара SMD резисторов и два конденсатора.

Простой самодельный контроллер заряда литиевых батарей

Для тестирование выбрал аккумулятор с батареи ноутбука. Что-ж, заряд пошел, ну а зарядит или не зарядит — увижу утром, а сейчас спать.

Простой контроллер заряда литиевых батарей

Утро показало, что заряд прошел успешно, но спешил в школу и забыл сфотографировать. Всем удачи в повторении, а с вами, как всегда, был Kalyan.Super.Bos

Инфракрасный датчик приближения объектов к транспортным средствам — схема для самостоятельной сборки на базе E18-D80NK.

Как правильно выбрать резистор для LED, а также способы питания светодиодов.

Усилитель мощности звука на транзисторах, из радиоконструктора DJ200. Проверка работы схемы.

Источник

Самодельный контроллер заряда li ion аккумулятора

Многие люди все еще не знают, что такое контроллер заряда, и попросту игнорируют его существование, что очень зря. Подобные платы просто спасают аккумуляторы каждый день.

Контроллер заряда li-ion аккумулятора 18650

Контроллер заряда – защитная электронная схема в АКБ, которая предотвращает ее сильную разрядку или перезарядку, контролирует силу тока и температурный режим, устанавливает время окончания заряда. Как функционирует контроллер заряда li ion аккумулятора 18650, для чего он необходим?

Контроллер контролирует процесс зарядки и разрядки батареек. Если напряжение понижается до 3 В, защита деактивирует банку от потребителя тока: девайс выключается. Еще защитная схема помогает предотвратить короткие замыкания. Некоторые разновидности защитных плат имеют терморезистор, который спасает компоненты аккумулятора от перегрева.

Все платы контролируют:

  • переразряд и разряд;
  • ток нагрузки;
  • температуру и оптимизацию.

Важно! При зарядке АКБ без контроллера зарядки или при выходе контроллера из строя возможны неприятные последствия, такие как, разрушение корпуса, закипание или деградация аккумулятора.

Опасность перезаряда и полного разряда, чем грозит

Если говорить о lion батарейках, нельзя допускать их полного разряжения или перезарядки. Например, никель-кадмиевые АКБ обладают эффектом памяти. Это означает, что неправильная зарядка приводит к потерям ёмкостных характеристик. Неправильно, когда заряжается аккумулятор, который сел неокончательно. Если начать подзаряжать его не при нуле, он может потерять свои емкостные хар-ки.

Зарядники для таких батареек создают со специальными рабочими режимами, которые в первую очередь садят АКБ полностью, потом начинают ее наполнять энергией. Литиевые аккумуляторы не требуют к себе такого внимания. У них отсутствует эффект памяти, но они не выносят полный разряд.

Поэтому их стоит сразу наполнять энергией, не дожидаясь нуля. Но и перезаряд, это тоже не лучший вариант. Это касается лишь батарей без защиты. Если у аккумуляторных батарей есть контроллер заряда, то он сам будет контролировать процессы.

Особенности контроллера для зарядки li-ion аккумулятора

Контроллер зарядки литий ионного аккумулятора находится в верхней части корпуса, тем самым делает длиннее сам аккумулятор. Плата находится впереди отрицательного клеммника, защищая аккумулятор от перезарядки/переразрядки. Страна-изготовитель контроллеров зарядки литиевых аккумуляторов – Китай.
После монтажа контроллера(модуля), корпусную часть перемещают в пленочку с термической усадкой. Из-за доп. защиты, корпус становится больше в плане размера.

Виды контроллеров

Существуют разные виды защиты. Контроллеры заряда li ion аккумуляторов 18650 отличаются стоимостью, изготовителем и внутренними компонентами.

Самые популярные контроллеры аккумулятора:

  1. HX-3S-A02 (ценник – 150 руб.). Китайского производства, внутри схема S-8254AA, которая избавляет компоненты от серьезного заряда/разряжения. К нему можно присоединить три АКБ (макс. ток – 10 А). Габариты – 50х16 мм.
  2. FDC-2S-2 (стоит – 50 руб.). Создатель – Китай, схема – HY2120, защищает от заряда/разряда, замыканий. Можно применить две маленьких батарейки (макс. ток – 3А). Габариты – 36х6х1 мм.
  3. HX-2S-01 (можно купить за 70 руб.). Китайское производство, схема – HY2120, спасает от заряда/разряда, замыканий. Использовать разрешено две батарейки 18650 (макс. ток – 3 А). Параметры – 36х6х1 мм.
  4. HX-3S-D01( 220 руб.). Китайское производство, чип S-8254AA, регулирует заряд/разряд, спасает от замыкания. Можно применить три аккумулятора 18650 (макс. ток – 20 А). Хар-ки – 51х23 мм.
  5. HX-3S-D02 (200 ₽). Создано в Китае, внутри интегральная схема S-8254AA, спасает от проблем с зарядкой и коротких замыканий. Можно использовать три батарейки типа 18650 (макс. ток – 10 А). Параметры – 50х16 мм.
  6. HX-4S-A01 (250 ₽). Произведено в Китае, внутри чип S-8254AA, спасает от проблем связанных с зарядкой и замыканиям. Можно использовать четыре батарейки 18650 (макс. ток – 6 А). Габариты – 67х16мм.
Читайте также:  Автомобильные аккумуляторы Akom REACTOR в Екатеринбурге

Сложно сказать, какой из них лучше, ведь если судить, по отзывам с Алиэкспресс, самым эффективным считается другой, которого нет в списке, а точнее hd8200 контроллер аккумулятора.

Схемы контроллеров

  1. DW01-Plus. Самая популярнейшая схема контроллера литий ионного аккумулятора, расположена под самоклейкой. Защита 6-ногая, полевые транзисторного типа агрегаты совмещены в один корпусный элемент 8-ногой сборкой. Сопротивление транзисторных установок формирует измерительный шунт. В полевиках есть специальные светоизлучающие диоды, благодаря которым аккумуляторная батарея наполняется энергией.
  2. S-8241 Серия. Специальные схемы от организации SEIKO, которая специализируется на lion батареях. Ключи защиты начинают срабатывать при 2,3 и 4,35 В и при спаде напряжения до 200 мВ.
  3. LV5114OT. Ограничитель запускается при 2,5 и 4,25 вольтах.
  4. R5421N Серия. Тратится при активном состоянии – 3 мкА, в отключенном состоянии – 0,3 мкА.

Как сделать зарядное устройство с контроллером для аккумулятора 18650 своими руками

Итак, найдите для начала бокс, органайзер и приспособление для держания.
Данные боксы от компании Shenzhen Blossom Electronic подойдут лучше всего.
Созданы они из твердого пластика, имеют надёжные контакты, АКБ держатся уверенно, и в общем, выглядит приятно.
Еще нужно взять контроллер заряда на микросхемы TP4056. Габариты 26X17мм.
Подключается по микро юсб, может функционировать с батарейками 3,7 вольт,
поддерживает зарядного типа ток, около 1 А.
Ниже показан график защитной платы TP4056.

В зарядном устройстве будет использована лишь эта опция.

А контроль разряда аккумуляторных батарей используется только в случае подключения нагрузки через эту плату. Поэтому схемка получается очень простой, припаяйте провода согласно изображению, после прикрепите контроллер к боксу и изолируйте все голые контакты.

Источник

Зарядное устройство для Li-Ion аккумулятора из барахла

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.

Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .

В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.

Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.

Источник



Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Плата защиты li-ion со сборкой полевых транзисторов 8205А

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

Защита для лития 18650

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Схема модуля защиты литиевого аккумулятора на DW01

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Читайте также:  Дополнительные аккумуляторы для смартфонов samsung

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Сборка полевичков 8205

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

SEIKO S-8241 Series (защита Li-ion)

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Схема на ААТ8660 для защиты литиевого аккумулятора

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

FS326 Series для защиты полимерных аккумуляторов

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Плата PCB для защиты li-ion от глубокого разряда

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схема защиты литиевого аккумулятора на микросхемах серии R5421N

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025

SA57608

Плата защиты лития на ИМС SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

LC05111 для защиты лития

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет

11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (

4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Источник

Зарядное устройство для литиевых аккумуляторов

Зарядное устройство для литиевых аккумуляторов по своему строению и принципу работы весьма схоже с ЗУ для свинцово-кислотных. Каждая банка литиевых АКБ имеет более высокое значение напряжения. Кроме того, они более чувствительные к перенапряжению и перезаряду.

Литий-ионный аккумулятор 18650

Банка – это один живительный элемент. Получил он свое название от схожести с жестяными банками для напитков. Для литиевых элементов наиболее распространенным вариантом является 18650. Это число легко расшифровывается. В миллиметрах указана толщина – 18 и высота – 65.

Читайте также:  Авто аккумуляторы нижний тагил чайковского 89

Если другие виды аккумуляторов позволяют иметь больший разбег в подаваемом напряжении при зарядке, то для литиевых этот показатель должен быть намного точнее. Во время достижения на аккумуляторе напряжения в 4.2 вольта зарядка должна останавливаться, перенапряжение для них опасно. Допускается отклонение от нормы в 0.05 вольта.

Среднее время заряда для литиевых батарей – 3 часа. Это усреднённый показатель, все же каждый отдельный аккумулятор имеет свое значение. От качества зарядки литиевых АКБ зависит срок их службы.

Условия длительного хранения

Совет. Хранить литий-ионные аккумуляторы необходимо правильно. Если устройство долгое время не будет использоваться, то батарею лучше из него вынуть.

Если оставить хранится полностью заряженный аккумуляторный элемент, то он может навсегда утратить часть своей ёмкости. Если оставить хранится разряженную батарею, она может больше не восстановиться. Значит, даже попытавшись ее реанимировать, можно потерпеть фиаско. Поэтому оптимальный рекомендуемый заряд для хранения литиевых банок – 30-50%.

Использование оригинальных зарядных устройств

Некоторые производители указывают, что использование неродных зарядных устройств для li ion аккумуляторов может привести к потере гарантии на устройство. Все дело в том, что плохое зарядное может погубить аккумуляторный элемент. Литиевые батареи могут портиться из-за неправильного напряжения или некорректного затухания в конце зарядки. Поэтому использование оригинального зарядного устройства – это всегда лучший выбор.

Заводское ЗУ

Опасность перезаряда и полного разряда

Исходя из устройства литиевых батарей, не рекомендуется допускать их полной разрядки или перезарядки.

К примеру, никель-кадмиевые батареи имеют эффект памяти. Это значит, что неправильный режим зарядки приводит к потере ёмкости. Неправильным считается режим, когда подзаряжается батарея, которая не полностью разрядилась. Если начать заряжать ее в не полностью разряженном состоянии, она может терять свою ёмкость. Зарядные устройства для таких батарей производятся со специальными режимами работы, которые сначала разряжают батарею до нужного уровня, потом начинают ее подзаряжать.

Литиевые батареи не требуют такого хлопотного обслуживания. Эффекта памяти у них нет, но они боятся полной разрядки. Поэтому их лучше подзарядить, когда появляется возможность, не дожидаясь полного разряда. Но и перезаряд для них неприемлем. Поэтому оптимальным будет не допускать разряда ниже 15 % и заряда более 90%. Так можно увеличить срок службы батареи.

Это касается только батарей без защиты. Если у аккумуляторов есть защита, реализованная на отдельной плате, то она отсекает заряд сверх меры, если разряд достигает минимального уровня, то отключает устройство. Обычно это показатели более 4,2 Вольта и 2.7 Вольта, соответственно.

Отношение к перепадам температур

Рабочий диапазон температур для литиевых батарей невелик – от +5 до +25 градусов по Цельсию. Сильные перепады температур нежелательны для их работы.

Самодельный зарядник для литий-ионных аккумуляторов

При перезаряде температура аккумулятора может повышаться, что нехорошо сказывается на его работе. Низкая температура также действует отрицательно. Подмечено, что на морозе аккумуляторы быстрее теряют свой заряд и садятся, хотя в тепле устройство показывает полную зарядку.

Особенности литиевых батарей

Li-ion АКБ являются очень неприхотливыми в эксплуатации. При бережном обращении они прослужат около 3-4 лет. Однако стоит ориентироваться на то, что даже если аккумуляторы не используются, они медленно умирают. Поэтому запасаться аккумуляторами к устройству впрок не совсем резонно. 2 года – это нормальное время от момента производства. Если прошло больше, то это могут быть уже вышедшие из строя батареи.

Интересно. Самый распространенный размер банки 18650 в среднем имеет ёмкость в 3500 мАч. Нормальная цена для такой батареи – 3-4 доллара. Поэтому производители, обещающие за 3 доллара Power bank объемом 10000 мАч, мягко говоря, обманывают. Хорошо, если там будет хотя бы 3000 мАч.

Как правильно заряжать полимерный аккумулятор

Полимерный аккумулятор от ионного отличается только внутренней консистенцией наполнителя. Правила зарядки и эксплуатации применимы к обоим видам этих литиевых батарей.

Как сделать зарядное устройство для литиевого аккумулятора своими руками

Схема самодельной зарядки для литиевых аккумуляторов

Рассмотрим одну из самых простых схем зарядного устройства для литий-ионных аккумуляторов. Самодельная схема зарядки реализована на микросхеме, которая выступает как стабилитрон и контроллер заряда, и транзисторе. База транзистора соединяется с управляющим электродом микросхемы. Литиевые батареи не любят перенапряжения, поэтому на выходе обязательно нужно выставить рекомендуемое напряжение в 4.2 В. Достичь этого можно с помощью регулировки микросхемы сопротивлениями R3 R4, которые имеют значения 3кОм и 2.2 кОм, соответственно. Подключаются они к первой ножке микросхемы. Регулировка задаётся единожды, и напряжение остаётся постоянным.

Чтобы можно было подстроить напряжение на выходе на месте резистора R, устанавливают потенциометр. Производить подстройку нужно без нагрузки, то есть без самого аккумулятора. С его помощью можно точно подстроить напряжение на выходе, равное 4,2 В. Потом вместо потенциометра можно поставить резистор полученного номинала.

Резистор R4 используется, чтобы открывать базу транзистора. Номинал этого сопротивления – 0,22 кОм. Когда аккумулятор будет заряжаться, его напряжение будет расти. От этого электрод управления на транзисторе будет повышать сопротивление эмиттер-коллектора. Это, в свою очередь, будет понижать ток, идущий на аккумулятор.

Ещё нужно отрегулировать ток зарядки. Для этого используют сопротивления R1. Без этого резистора не загорится светодиод, он отвечает за индикацию процесса зарядки. В зависимости от необходимого тока, подбирают резистор номиналом от 3 до 8 Ом.

Как выбрать аккумулятор

Отдельное внимание нужно уделить производителям аккумуляторов. Существуют зарекомендовавшие себя бренды и какие-то неизвестные аналоги. Иногда недобросовестные производители могут продавать товар, который ниже заявленных характеристик в 3 раза и более.

Обратите внимание! К брендам, получившим популярность, можно отнести Panasonic, Sony, Sanyo, Samsung.

Покупка литиевых аккумуляторов не должна вызвать больших проблем. Купить их можно в местных магазинах электроники, в интернет-магазинах или заказать напрямую из Китая. Не стоит гнаться за дешевизной. Хороший аккумулятор не может стоить очень дёшево. Некоторые производители ставят качественные банки, но плохие платы, отвечающие за питание. Это неминуемо приведет к гибели батареи.

Видео

Источник

Опасность перезаряда и полного разряда

Зарядное устройство для литиевых аккумуляторов

Зарядное устройство для литиевых аккумуляторов по своему строению и принципу работы весьма схоже с ЗУ для свинцово-кислотных. Каждая банка литиевых АКБ имеет более высокое значение напряжения. Кроме того, они более чувствительные к перенапряжению и перезаряду.

Литий-ионный аккумулятор 18650

Банка – это один живительный элемент. Получил он свое название от схожести с жестяными банками для напитков. Для литиевых элементов наиболее распространенным вариантом является 18650. Это число легко расшифровывается. В миллиметрах указана толщина – 18 и высота – 65.

Если другие виды аккумуляторов позволяют иметь больший разбег в подаваемом напряжении при зарядке, то для литиевых этот показатель должен быть намного точнее. Во время достижения на аккумуляторе напряжения в 4.2 вольта зарядка должна останавливаться, перенапряжение для них опасно. Допускается отклонение от нормы в 0.05 вольта.

Среднее время заряда для литиевых батарей – 3 часа. Это усреднённый показатель, все же каждый отдельный аккумулятор имеет свое значение. От качества зарядки литиевых АКБ зависит срок их службы.

Условия длительного хранения

Совет. Хранить литий-ионные аккумуляторы необходимо правильно. Если устройство долгое время не будет использоваться, то батарею лучше из него вынуть.

Если оставить хранится полностью заряженный аккумуляторный элемент, то он может навсегда утратить часть своей ёмкости. Если оставить хранится разряженную батарею, она может больше не восстановиться. Значит, даже попытавшись ее реанимировать, можно потерпеть фиаско. Поэтому оптимальный рекомендуемый заряд для хранения литиевых банок – 30-50%.

Использование оригинальных зарядных устройств

Некоторые производители указывают, что использование неродных зарядных устройств для li ion аккумуляторов может привести к потере гарантии на устройство. Все дело в том, что плохое зарядное может погубить аккумуляторный элемент. Литиевые батареи могут портиться из-за неправильного напряжения или некорректного затухания в конце зарядки. Поэтому использование оригинального зарядного устройства – это всегда лучший выбор.

Заводское ЗУ

Опасность перезаряда и полного разряда

Исходя из устройства литиевых батарей, не рекомендуется допускать их полной разрядки или перезарядки.

К примеру, никель-кадмиевые батареи имеют эффект памяти. Это значит, что неправильный режим зарядки приводит к потере ёмкости. Неправильным считается режим, когда подзаряжается батарея, которая не полностью разрядилась. Если начать заряжать ее в не полностью разряженном состоянии, она может терять свою ёмкость. Зарядные устройства для таких батарей производятся со специальными режимами работы, которые сначала разряжают батарею до нужного уровня, потом начинают ее подзаряжать.

Литиевые батареи не требуют такого хлопотного обслуживания. Эффекта памяти у них нет, но они боятся полной разрядки. Поэтому их лучше подзарядить, когда появляется возможность, не дожидаясь полного разряда. Но и перезаряд для них неприемлем. Поэтому оптимальным будет не допускать разряда ниже 15 % и заряда более 90%. Так можно увеличить срок службы батареи.

Это касается только батарей без защиты. Если у аккумуляторов есть защита, реализованная на отдельной плате, то она отсекает заряд сверх меры, если разряд достигает минимального уровня, то отключает устройство. Обычно это показатели более 4,2 Вольта и 2.7 Вольта, соответственно.

Отношение к перепадам температур

Рабочий диапазон температур для литиевых батарей невелик – от +5 до +25 градусов по Цельсию. Сильные перепады температур нежелательны для их работы.

Самодельный зарядник для литий-ионных аккумуляторов

При перезаряде температура аккумулятора может повышаться, что нехорошо сказывается на его работе. Низкая температура также действует отрицательно. Подмечено, что на морозе аккумуляторы быстрее теряют свой заряд и садятся, хотя в тепле устройство показывает полную зарядку.

Особенности литиевых батарей

Li-ion АКБ являются очень неприхотливыми в эксплуатации. При бережном обращении они прослужат около 3-4 лет. Однако стоит ориентироваться на то, что даже если аккумуляторы не используются, они медленно умирают. Поэтому запасаться аккумуляторами к устройству впрок не совсем резонно. 2 года – это нормальное время от момента производства. Если прошло больше, то это могут быть уже вышедшие из строя батареи.

Интересно. Самый распространенный размер банки 18650 в среднем имеет ёмкость в 3500 мАч. Нормальная цена для такой батареи – 3-4 доллара. Поэтому производители, обещающие за 3 доллара Power bank объемом 10000 мАч, мягко говоря, обманывают. Хорошо, если там будет хотя бы 3000 мАч.

Как правильно заряжать полимерный аккумулятор

Полимерный аккумулятор от ионного отличается только внутренней консистенцией наполнителя. Правила зарядки и эксплуатации применимы к обоим видам этих литиевых батарей.

Как сделать зарядное устройство для литиевого аккумулятора своими руками

Схема самодельной зарядки для литиевых аккумуляторов

Рассмотрим одну из самых простых схем зарядного устройства для литий-ионных аккумуляторов. Самодельная схема зарядки реализована на микросхеме, которая выступает как стабилитрон и контроллер заряда, и транзисторе. База транзистора соединяется с управляющим электродом микросхемы. Литиевые батареи не любят перенапряжения, поэтому на выходе обязательно нужно выставить рекомендуемое напряжение в 4.2 В. Достичь этого можно с помощью регулировки микросхемы сопротивлениями R3 R4, которые имеют значения 3кОм и 2.2 кОм, соответственно. Подключаются они к первой ножке микросхемы. Регулировка задаётся единожды, и напряжение остаётся постоянным.

Чтобы можно было подстроить напряжение на выходе на месте резистора R, устанавливают потенциометр. Производить подстройку нужно без нагрузки, то есть без самого аккумулятора. С его помощью можно точно подстроить напряжение на выходе, равное 4,2 В. Потом вместо потенциометра можно поставить резистор полученного номинала.

Резистор R4 используется, чтобы открывать базу транзистора. Номинал этого сопротивления – 0,22 кОм. Когда аккумулятор будет заряжаться, его напряжение будет расти. От этого электрод управления на транзисторе будет повышать сопротивление эмиттер-коллектора. Это, в свою очередь, будет понижать ток, идущий на аккумулятор.

Ещё нужно отрегулировать ток зарядки. Для этого используют сопротивления R1. Без этого резистора не загорится светодиод, он отвечает за индикацию процесса зарядки. В зависимости от необходимого тока, подбирают резистор номиналом от 3 до 8 Ом.

Как выбрать аккумулятор

Отдельное внимание нужно уделить производителям аккумуляторов. Существуют зарекомендовавшие себя бренды и какие-то неизвестные аналоги. Иногда недобросовестные производители могут продавать товар, который ниже заявленных характеристик в 3 раза и более.

Обратите внимание! К брендам, получившим популярность, можно отнести Panasonic, Sony, Sanyo, Samsung.

Покупка литиевых аккумуляторов не должна вызвать больших проблем. Купить их можно в местных магазинах электроники, в интернет-магазинах или заказать напрямую из Китая. Не стоит гнаться за дешевизной. Хороший аккумулятор не может стоить очень дёшево. Некоторые производители ставят качественные банки, но плохие платы, отвечающие за питание. Это неминуемо приведет к гибели батареи.

Видео

Источник

Простейшее зарядное устройство для литиевого аккумулятора

Прогресс в сфере носимой коммуникационной электроники, такой как мобильные телефоны, планшеты и ноутбуки, происходит быстрыми темпами, и даже можно сказать скачками. Современные портативные устройства хотя и выполнены на экономичных и энерго-эффективных чипах и процессорах, но в общей сложности, ввиду своей многофункциональности, энергопотребление устройства в целом довольно велико, и следовательно требует ёмких аккумуляторов питания и мощных зарядных устройств для этих аккумуляторов. Это всё ничего, но такими зарядными устройствами невозможно корректно зарядить аккумуляторы малой ёмкости, которые зачастую достаются радиолюбителю из старых мобильных телефонов или разобранных батарей ноутбуков:

Аккумуляторы старых мобильных телефоновАккумуляторы из разобранной батареи ноутбука
Аккумуляторы старых мобильных телефонов и из разобранной батареи ноутбука

Такие аккумуляторы, как правило, извлекаются из отработавших определённый срок устройств, и характеризуются пониженной ёмкостью и возросшим внутренним сопротивлением. Их вполне можно использовать в различных радиолюбительских самоделках с автономным питанием и сравнительно низким энергопотреблением, но если заряжать такие аккумуляторы стандартными современными средствами током большой величины, то прекращение заряда будет происходить при их неполной зарядке, что нецелесообразно, и не позволит задействовать весь оставшийся ресурс.

Описание

Как раз для корректной и полной зарядки отработавших и потерявших свои первоначальные свойства аккумуляторов и разрабатывалось предлагаемое простое зарядное устройство, максимальный зарядный ток которого не превышает 350 мА, а процесс зарядки производится методом ток-напряжение до значения 4,35 В. Имеется индикация режима зарядки и защита самого устройства от короткого замыкания в нагрузке. Питание производится от осветительной сети 220В, или от автономного источника с постоянным напряжением 5В, а собрано всё в компактном корпусе ЗУ мобильного телефона:

Внешний вид готового устройства
Внешний вид готового устройства

Внимание! Автор статьи не является разработчиком отдельных узлов единой конструкции, и никак не претендует на их схемотехнические решения. Данное устройство работает под высоким напряжением, опасным для жизни. Строго соблюдайте все меры безопасности. При повторении и/или ремонте Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

Что бы не придумывать всё с нуля и облегчить задачу как проектирования, так и повторения, за основу конструкции был взят модуль зарядки литий-ионных аккумуляторов с обозначением TP4056, который собран на одноимённой микросхеме, представляющей собой линейный стабилизатор тока с внешним резистором, задающим его значение. В составе имеется разного рода защита и индикация режимов работы, а его цена на Алиэкспресс довольно низкая, которая составляла 12 центов на момент написания статьи. Там же есть и вариант с защитой самого заряжаемого аккумулятора от глубокой разрядки, но в данном случае такая опция была не нужна:

Плата модуля зарядки TP4056
Плата модуля зарядки TP4056

Сам модуль имеет разъём микро-USB для подачи питания, которое дублируется на контактных площадках возле него. Так же на контактные площадки выведено выходное напряжение, для подачи на заряжаемый аккумулятор. Как уже говорилось, основой модуля является микросхема TP4056, кроме которой на плате установлены индикаторные светодиоды и некоторая обвязка. Типовая схема включения микросхемы довольна простая, и дополнительно учитывает подключение датчика температуры, для защиты заряжаемого аккумулятора от перегрева, но его подключение на плате модуля не предусмотрено, хотя при большом желании терморезистор можно подсоединить к первому выводу микросхемы:

Типовая схема включения микросхемы TP4056
Типовая схема включения микросхемы TP4056

Входное напряжение питания 5 Вольт, на модуль подаётся через разъём USB, или на контактные площадки «IN+» и «IN-«, а аккумулятор подключается к площадкам с обозначением «BAT+» и «BAT-«. Во время процесса зарядки светится красный светодиод, а после завершения он гаснет, и зажигается светодиод зелёного цвета свечения. Интересной особенностью микросхемы является тот факт, что необходимый ток зарядки аккумулятора можно задавать внешним резистором, который называется программным, и на плате модуля он отмечен как «R-prog». На готовом модуле сопротивление этого резистора рассчитано на зарядный ток 1А, что довольно много для аккумуляторов небольшой ёмкости. В официальной документации на микросхему TP4056 представлена формула для расчёта силы зарядного тока по определённому сопротивлению этого резистора:

Читайте также:  Дополнительные аккумуляторы для смартфонов samsung

Схема подключения модуля зарядки TP4056

Формула для расчёта сопротивления программного резистора
Схема подключения модуля зарядки TP4056 и формула для расчёта сопротивления программного резистора

Кроме этого имеется так же таблица готовых значений сопротивления этого резистора под определённую силу зарядного тока. Самым оптимальным током зарядки для небольших аккумуляторов был выбран ток порядка 350 мА, которому в этой таблице соответствует значение сопротивления где то между 3 и 4 кОм. Далее заводской резистор поверхностного монтажа был выпаян, а на его место был установлен выводной резистор на сопротивление 3,3 кОм. Если считать по формуле, то зарядный ток как раз получается около 360 мА. Так же с платы были удалены штатные светодиоды, а их контакты были выведены наружу тонкими цветными проводниками в изоляции:

Таблица соответствия тока зарядки от сопротивления резистора Доработанная плата модуля TP4056
Доработанная плата модуля TP4056 и таблица соответствия тока зарядки от сопротивления резистора

Так же цветные проводники были припаяны и к контактным площадкам модуля, для дальнейшего подключения к месту назначения. А сама плата была установлена в нижнюю часть корпуса с сохранением штатного USB-разъёма, под который в нужном месте было сделано продолговатое отверстие. Через этот разъём можно будет производить зарядку аккумуляторов от других автономных источников с выходным напряжением 4,5 — 7,5 Вольт:

Установленная в корпус плата модуля TP4056
Установленная в корпус плата модуля TP4056

В качестве штатного источника питания, был применён преобразователь сетевого напряжения, уже имеющийся в используемом корпусе адаптера для телефона. Его принципиальная схема очень простая, и по желанию её можно легко повторить. Преобразователь основан на обратно-ходовом блокинг-генераторе и содержит минимум деталей. Подобное устройство уже описывалось в предыдущей статье, но хотя, по сравнению с прошлым, в схеме и имеется второй транзистор, её сборка будет ненамного сложнее одно-транзисторной конструкции:

Принципиальная схема преобразователя сетевого напряжения

Входное напряжение осветительной сети, через ограничитель тока на резисторе R1, который одновременно выполняет роль предохранителя, подаётся на выпрямительный мост на диодах D1 — D4, и выпрямляясь сглаживается фильтрующим конденсатором C1.

На транзисторе Q1 выполнен блокинг-генератор, возбуждающийся за счёт положительной обратной связи по переменному току, посредством трансформатора Tr1, через цепочку C4, R6.

Стабилизация выходного напряжения, а точнее напряжения на обмотке связи III, происходит за счёт отрицательной обратной связи по постоянному напряжению через выпрямительный диод D6, и задающий уровень выходного напряжения стабилитрон ZD1. Конденсатор C3 сглаживает пульсации выпрямленного напряжения отрицательной обратной связи, а само выходное напряжение преобразователя снимается с обмотки II трансформатора, выпрямляясь диодом D5 и сглаживаясь конденсатором фильтра C2.

Индикаторный светодиод LED1 с ограничительным резистором R7 на выходе играет роль индикатора, и некоторой начальной нагрузки, без которой напряжение на обмотках трансформатора может возрасти неограниченно, что приведёт прежде всего к пробою транзисторов и выходу их из строя.

На транзисторе Q2 собран узел отрицательной обратной связи по току, защищающий ключевой транзистор и выходные элементы от перегрузок. Как видно, стабилизация выходного напряжения не выполняется непосредственно, что является главным недостатком схемы и причиной низкой стабильности выходного напряжения, но в данном случае это не критично, так как к выходу будет подключаться модуль TP4056, имеющий в своём составе стабилизатор тока и напряжения. Полная схема всего зарядного устройства выглядит следующим образом:

Полная схема зарядного устройства с модулем TP4056

Вместо указанного преобразователя, можно использовать любой другой источник с ЭДС от 4,5В до 7,5В, обеспечивающий необходимый ток нагрузки. Ну а далее рассмотрим, как самостоятельно собрать и наладить зарядное устройство с описываемым преобразователем, как с самым простым вариантом.

Коротко о деталях

Конденсаторы C1, C2 и C3 электролитические, C1 на напряжение не ниже 400 Вольт, а C2 на удвоенное значение выходного напряжения. Все резисторы малогабаритные, с мощностью рассеивания 0,25 Вт. Выпрямительные диоды D1 — D4 высоковольтные, на ток от 1 А. Диоды D5 и D6 должны быть высокочастотными, с малым временем восстановления. От стабилитрона ZD1 (должен иметь малый ток стабилизации) зависит средний уровень выходного напряжения, который должен уметь обеспечивать трансформатор и преобразователь в целом. Силовой транзистор ключа Q1 так же высоковольтный, обратной проводимости, малой или средней мощности. В качестве второго транзистора можно использовать почти любой экземпляр из транзисторов малой мощности, с коэффициентом передачи тока базы от 50 и невысоким обратным током коллектора. В одном из таких преобразователей даже использовался советский транзистор KT315, который нормально работал в данной схеме.

Сам трансформатор выполнен на ферритовом сердечнике E24/12/6 типоразмера Ш6×6, который обязательно должен иметь зазор между двумя его половинами. В данном случае зазор был составлен из одного слоя обмоточного теплостойкого скотча. Первичная обмотка содержит 300 витков провода, диаметром 0,08 мм, а обмотки II и III имеют по 8 витков. Провод обмотки II должен выдерживать выходной ток нагрузки и может иметь диаметр 0,6 — 0,8 мм. Диаметр провода обмотки обратной связи III не критичен и можно использовать провод с диаметром от 0,1 мм. Между обмотками следует намотать изоляционный материал, такой как трансформаторная бумага или теплостойкий скотч. Обязательно нужно обратить внимание на фазировку обмоток, начала которых на принципиальной схеме обозначены точками. При неправильной фазировке преобразователь не запустится, или будет работать некорректно.

Конструкция устройства

Все радиоэлементы преобразователя размещены на односторонней плате небольших размеров, к которой с одного края подводится сетевое напряжение от вилки на корпусе устройства, а с другого снимается выходное постоянное напряжение, подаваемое далее на вход платы модуля зарядки, установленной в корпусе, рядом с сетевой вилкой. К выходу модуля TP4056 подсоединены два провода различных цветов, продетые в гибкий направляющий фиксатор для вывода наружу. Посадочное место штатного светодиода преобразователя оказалось продублированным на другом конце платы, где впоследствии дополнительно был установлен второй светодиод зелёного цвета свечения. Контактные дорожки этих светодиодов были разрезаны, и к ним так же были припаяны разноцветные проводники, ведущие от контактных площадок предварительно удалённых светодиодов на плате зарядки. Для дополнительного светодиода, во второй части корпуса, в соответствующем месте было просверлено отверстие. Для окончательной сборки плата до упора вставляется в пазы внутри корпуса, головки светодиодов при этом выглядывают наружу. Держатель шнура фиксируется в предназначенной для него прорези, а половинки корпуса стягиваются винтом:

Плата преобразователя Дополнительное отверстие в корпусе

Сборка устройства Готовое зарядное устройство
Плата преобразователя и готовое зарядное устройство

Тестирование / Зарядка аккумулятора

Прежде чем окончательно собрать зарядное устройство в корпус, было замерено выходное напряжение преобразователя, с подключённым к нему модулем зарядки (уровень напряжения на входе модуля). Значение этого напряжения составило 5,5 Вольт, которое можно считать напряжением холостого хода:

Выходное напряжение преобразователя на холостом ходу
Выходное напряжение преобразователя на холостом ходу

При нормальной работе устройства, без подключённого аккумулятора, светится зелёный индикаторный светодиод, а напряжение на выходе при этом поддерживается в районе 4,1 Вольт. Во время короткого замыкания выходных проводников зелёный светодиод гаснет, и зажигается красный, а уровень выходного тока при этом не превышает значения 0,1 Ампер, что вполне безопасно как для самого устройства, так и для соединительных проводов:

Выходное напряжение устройства без подключённого аккумулятора
Выходное напряжение устройства без подключённого аккумулятора

Ток короткого замыкания выходных проводников
Ток короткого замыкания выходных проводников

Далее к изготовленному зарядному устройству был подключен разряженный до конца аккумулятор, и в начале, ток зарядки составил ровно 350 мА. При этом светится красный светодиод, а по истечении получаса, зарядный ток упал до значения 200 мА. Корпус устройства во время процесса слегка нагрелся, но по ощущению температура нагрева была невысокой, и её замеры не проводились:

Зарядка аккумулятора
Зарядка аккумулятора

Ток зарядки в начале процесса
Ток зарядки в начале процесса

Снижение зарядного тока
Снижение зарядного тока

В самом конце процесса зарядки напряжение на аккумуляторе достигает значения 4,35 Вольт, а ток зарядки снижается до уровня 36 мА, после чего резко падает, и процесс зарядки прекращается. При этом красный светодиод гаснет, и зажигается зелёный, сигнализируя об окончании зарядки аккумулятора. По истечении некоторого времени ЭДС аккумулятора снижается, но зарядка не возобновляется до определённого порога, указанного в документации на микросхему модуля:

Напряжение полностью заряжённого аккумулятора
Напряжение полностью заряжённого аккумулятора

Снижение зарядного тока в конце процесса зарядки
Снижение зарядного тока в конце процесса зарядки

Снижение ЭДС аккумулятора после завершения зарядки
Снижение ЭДС аккумулятора после завершения зарядки

В полевых условиях, при отсутствии осветительной сети, но при наличии автономного источника тока с соответствующим напряжением, такого как хранилище энергии (Power Bank) или ноутбук, заряжать аккумуляторы можно через разъём микро-USB, в обход преобразователя сетевого напряжения, который в таком случае не задействован, и в зарядке участвует только модуль TP4056. Заряжаемый аккумулятор подключается как обычно, а питание на устройство подаётся USB кабелем:

Питание зарядного устройства посредством USB
Питание зарядного устройства посредством USB

Самодельное зарядное устройство, собранное из простых и доступных деталей, получилось компактным и довольно надёжным. Его можно использовать на постоянной основе, для зарядки аккумулятора какого-либо одного устройства, или применить как универсальное устройство для зарядки большинства имеющихся аккумуляторов малой и средней ёмкости. Так например полная зарядка старого использованного аккумулятора с остаточной ёмкостью 800 мА*час, производится примерно за три часа, а по желанию можно установить другой ток зарядки, установив необходимый программный резистор, и использовав соответствующий преобразователь сетевого напряжения.

Тем, кому лень читать статью, для простого ознакомления с зарядным устройством можно посмотреть короткое видео.

Читайте также:  Может ли сесть аккумулятор от часов

Источник

10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать

  1. Немного о литий-ионных батареях
  2. Как сделать зарядку для литий-ионных аккумуляторов самостоятельно
  3. Какое устройство следует использовать
  4. Немного о литий-ионных батареях
  5. Какое устройство следует использовать
  6. Как заряжать АКБ 18650
  7. Полезные рекомендации при эксплуатации аккумуляторов 18650
  8. Как заряжать АКБ 18650

Немного о литий-ионных батареях

К ним относятся следующие аспекты:

  • высокая плотность выдаваемого тока и накапливаемой энергии, длительное сохранение заряда;
  • отсутствие эффекта снижения емкости при регулярной неполной зарядке;
  • саморазряд не более 4-8% в месяц при хранении без подзарядки, старение не более чем на 15-20% в год;
  • отсутствие необходимости в полном разряде для тренировки энергоемкости накопителя;
  • небольшой вес, вариативность формы и габаритов устройства;
  • диапазон рабочих температур – от -20°С до +50°С (низкие температуры препятствуют подзарядке);
  • длительный срок службы (до 10 лет работы и более 1000 циклов разряда).

Недостатками литиевых батарей являются:

  • зависимость срока эксплуатации от длительности использования и хранения, а не количества циклов разряда;
  • риск выхода из строя при перезаряде (поступлении тока по завершении зарядки);
  • низкая устойчивость к глубокому разряду;
  • высокая стоимость;
  • взрывоопасность при механических повреждениях и избытке тока, если они приводят к нагреву электролита и нарушению герметичности корпуса.

Название аккумулятора 18650 обусловлено его формой и габаритами. Ширина батареи составляет 18 мм, а длина – 65 мм. Последняя цифра в маркировке означает цилиндрическую форму АКБ. Схема накопителя снабжена контроллером, который предотвращает перегревание в процессе подзарядки.

Корпус аккумулятора может маркироваться и более подробно: например, INR18650-20R. Первая буква отличает все АКБ литиевого типа, вторая уточняет вид материала катода (C – кобальт, N – марганец, F – феррофосфат).

Буква «R» расшифровывается как rechargeable («перезаряжаемый источник»). Следующие 5 цифр отражают габариты и фактор формы батареи, а последняя – емкость АКБ в А/ч.

Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы

Аккумуляторы 18650 с платой защиты могут маркироваться как 18700 или 18670. Контроллер защитной платы позволяет предупредить превышение номинального вольтажа батареи (4,2 В) и его снижение более чем до 2,5 В.

Как сделать зарядку для литий-ионных аккумуляторов самостоятельно

Наиболее простым вариантом считается использование зарядного устройства от мобильного телефона. Приборы выдают напряжение, подходящее для восстановления мощности аккумуляторов 18650. Способ используется только в экстренных случаях. Частое его применение приводит к снижению емкости АКБ.

Самодельная зарядка для литий-ионного 18650-го аккумулятора, сделанная из старого зарядного устройства от телефона.

Чтобы зарядить батарейку, выполняют такие действия:

  1. Штекер зарядного устройства срезают. Провода освобождают от изоляции и делят на положительный и отрицательный полюса. Плюсовой кабель чаще всего имеет оплетку красного цвета, минусовой – черного.
  2. Очищенные провода прикрепляют к полюсам батареи пластилином. USB-кабель подсоединяют к разъему компьютера или специального адаптера.
  3. Источник питания заряжают, периодически отслеживая процесс. Заряжать батарейку рекомендуется не более часа. Этого времени достаточно для полного восстановления емкости.

Для сборки усовершенствованной зарядки используют сложные схемы. Перед началом работы подготавливают паяльник, припой, флюс и клей. Отдельно приобретают плату, необходимую для нормального функционирования самодельного ЗУ.

Сборку осуществляют так:

  1. Плату устанавливают в подготовленный заранее пластиковый бокс. Конструкцию снабжают плюсовым и минусовым проводами. Бокс используется для размещения батареи во время зарядки. Сделать емкость можно из старого ЗУ, непригодного к эксплуатации бытового прибора или игрушки. Размеры должны соответствовать параметрам аккумулятора.
  2. Плату припаивают, учитывая маркировку. Обозначения позволяют без труда разместить провода. Плата снабжена разноцветными индикаторами, отражающими ход зарядки. Микросхему приклеивают к боксу в удобном месте. После этого, соблюдая полярность, подключают провода. Перед фиксацией их очищают от изоляции и обрабатывают канифолью. На плату наносят небольшое количество жидкого припоя.

При изготовлении устройства нельзя допускать короткого замыкания. Приведенная выше схема позволяет собрать простое, но надежное ЗУ за несколько часов. С помощью USB-кабеля его подсоединяют к электросети или компьютеру. Батарею устанавливают в получившееся гнездо. После включения зеленого индикатора прибор отключают.

Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650

Какое устройство следует использовать

Разные модели зарядных устройств отличаются техническими характеристиками, набором функций и некоторыми другими параметрами:

Liitokala Lii-500 – универсальная зарядка, которая сама подбирает токи для .

  1. Простые. Такие приборы подают ток силой 1 А. Они имеют единственное гнездо для установки АКБ 18650.
  2. Усовершенствованные. Прибор снабжен 2 гнездами для батареек. Максимальный уровень напряжения составляет 4,2 В. Такое зарядное средство отличается более высокой стоимостью. К дополнительным функциям относится индикация заряда. Прибор самостоятельно ограничивает время процедуры, предотвращая перезаряд.
  3. Универсальные. Используются для зарядки источников питания типа 18650 и 26650. Модели такого типа используются для восстановления работоспособности литий-ионных и никель-кадмиевых элементов. Лучшие устройства оснащены системой безопасности, избавляющей от регулярного измерения напряжения и силы тока.
  4. Самодельные. Если готовый прибор найти невозможно, зарядное устройство можно собрать в домашних условиях. Компоненты соединяют согласно схемам.

Немного о литий-ионных батареях

Особенности АКБ типа 18650:

  1. Длительный срок службы. Источник питания способен выдерживать до 600 циклов разряда и заряда. Литиевые батареи обладают увеличенным сроком эксплуатации, они могут длительно сохранять емкость.
  2. Компактные размеры. Высота элемента составляет 65 мм, диаметр – 18 мм. Эти числа легли в основу названия аккумулятора. При небольших размерах батарея имеет широкие возможности.
  3. Наличие контроллера. Большая часть аккумуляторов старого образца отличается высокой взрывоопасностью. В корпусе батареи протекают химические реакции, скорость которых при перегреве многократно увеличивается. Возникало и механическое замыкание нескольких содержащих электролит емкостей, приводившее к возгоранию. Контроллер, встраиваемый в современные источники питания, препятствует сильному перегреву и взрыву. Это же от перезаряда.
  4. Невозможность длительного хранения. Долго находившиеся в нерабочем состоянии батарейки быстро утрачивают емкость. Заряжать li-ion аккумулятор нужно регулярно. При этом соблюдают ряд правил, препятствующих выходу изделия из строя. Нужно правильно рассчитывать ток заряда и ограничивать напряжение. Нарушение правил приводит к снижению срока службы.

Какое устройство следует использовать

Для подзарядки АКБ 18650 нужно использовать устройства с номинальным напряжением 4,2 В. Если литий-ионный накопитель планируется подключать к универсальному ЗУ, то оно должно быть оборудовано контроллером параметров и индикаторами окончания процесса.

Наиболее дешевые модели имеют 1-2 гнезда для батарей, максимальный ампераж до 1 А и номинальный вольтаж 4,2 В. Лучший вариант ЗУ для литиевых накопителей – интеллектуальное устройство, оборудованное измерителем напряжения на клеммах, функцией восстановления после глубокого разряда и защитой от превышения номинального вольтажа.

Как заряжать АКБ 18650

Многие зарядные устройства (ЗУ) универсальны, однако при зарядке литий-ионных аккумуляторов нужно соблюдать такие правила:

0,5-1 А – оптимальный ток заряда для 18650-х аккумуляторных батарей.

  1. На раннем этапе необходимо подавать не более 0,05 В. Заканчивают процедуру, повышая параметр до 4,2 В. Это значение является допустимым безопасным уровнем для батарей 18650.
  2. Ток заряда должен составлять 0,5-1 А. При большем значении заряд будет набираться быстрее. Однако подавать силу тока в 1 А сразу не рекомендуется. Показатель должен повышаться плавно.
  3. Ускоренные способы зарядки нужно применять только в экстренных случаях. Время процедуры не должно превышать 3 часов. Перезаряд приводит к повреждению компонентов АКБ, вызывая перегрев.
  4. Рекомендуется использовать устройства, автоматически контролирующие ход зарядки. Они самостоятельно отключаются после набора батареей требуемой мощности. Дешевые и самодельные приборы не оснащаются контроллерами, поэтому пользователю придется самостоятельно отслеживать ход процедуры.

Полезные рекомендации при эксплуатации аккумуляторов 18650

Чтобы сохранить емкость АКБ и продлить срок их эксплуатации, нужно следовать нескольким советам:

  • правильно выбирать режим работы ЗУ, при отсутствии контроллера регулировать параметры автоматически;
  • избегать глубокого разряда, подключать аккумулятор при снижении заряда до 70-80%;
  • при расчете длительности восстановления учитывать не только количество ампер-часов, но и разницу вольтажа при зарядке в заводских и домашних условиях, которая влияет на ваттную емкость;
  • не пытаться увеличить емкость АКБ циклами разряд-заряд;
  • не допускать перегрева накопителя, не оставлять его под прямыми солнечными лучами;
  • эксплуатировать батарею при температуре +10…+25°С, для использования при низких температурах утеплить корпус;
  • не допускать ударов по телу АКБ, воздействия сильного трения и вибрации, при транспортировке укладывать аккумуляторы на толстую мягкую подложку;
  • хранить литий-ионные накопители с 50-60% заряда и при температуре около 0°С.

При покупке аккумулятора нужно обращать внимание на дату выпуска. Батареи, произведенные более 3 лет назад, считаются просроченными и малофункциональными

Как правильно заряжать 18650 аккумуляторы Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы Как правильно заряжать 18650 аккумуляторы Зарядка для аккумуляторов 18650 Как правильно заряжать 18650 аккумуляторы

Как заряжать АКБ 18650

При зарядке АКБ 18650 необходимо соблюдать следующие правила:

  1. Начинать восстановление нужно при напряжении 0,05 В, постепенно повышая его до 4,2 В.
  2. Диапазон допустимого тока заряда – 25-50% от емкости (например, для АКБ на 2000 мА/ч он варьируется от 0,5 до 1 А).
  3. Оптимальный показатель составляет 25-30% емкости, максимальный ампераж используется только при срочной подзарядке.
  4. Допустимое время зарядки при полном разряде аккумулятора – 3 часа.
  5. Для точного выбора длительности восстановления нужно измерить его вольтаж мультиметром или подключить к интеллектуальному зарядному устройству (ЗУ).

Оптимальный режим состоит из двух этапов:

  1. CC (constant current). На нем нужно обеспечить постоянный ампераж, который находится в пределах 20-50% емкости аккумулятора. При ускоренном заряде может использоваться и большее значение тока, но часто применять такой режим не рекомендуется. Зарядное устройство должно быть оборудовано функцией плавного подъема вольтажа. На первом этапе зарядник работает как стабилизатор силы тока.
  2. CV (constant voltage). При подъеме напряжения до 4,2 В можно переходить ко второму этапу подзарядки, на котором поддерживается вольтаж 4,15-4,25 В. К концу первого этапа АКБ восстанавливается на 70-80%. По мере накопления заряда до 90-95% ампераж будет плавно снижаться. Как только его значение достигнет 1-5% емкости, батарею можно отключать от ЗУ.

Некоторые модели «зарядок» оборудованы режимом восстановления АКБ при глубоком разряде (менее 2,5 В). На нем батарея заряжается низким током (не более 5-10% емкости) до тех пор, пока ее вольтаж не достигнет 2,8 В. После этого ЗУ переходит в режим постоянного тока.

Читайте также:  3 Японский стандарт JIS Емкость при 5 и часовом разряде

Источник



Простой зарядник для литиевых аккумуляторов

Содержание / Contents

  • 1 Схема зарядного устройства
  • 2 О литиевых аккумуляторах. Перезаряд недопустим!
  • 3 Чертёж печатной платы
  • 4 Сборка, испытания
  • 5 Готовое устройство
  • 6 Файлы

↑ Схема зарядного устройства

LM317 ограничивает ток, TL431+IRF ограничивает напряжение. Ничего особенного, наверняка таких же точно схем уже нарисовали не один десяток. Ограничение тока настроено на 125 мА исходя из возможностей применённого трансформатора и из ограничения на тепловыделение в маленьком пластиковом корпусе. Вообще-то, даже маленькие аккумуляторы от мобилок держат гораздо больший зарядный ток без перегрева.

↑ О литиевых аккумуляторах. Перезаряд недопустим!

Особенность литиевых аккумуляторов в том, что у них очень строгие требования по части режима зарядки и эксплуатации. В частности, совершенно недопустимо их заряжать до напряжения более 4.2 В. Вернее, следует руководствоваться даташитом на конкретную банку, там может быть указан даже меньший безопасный порог.

Поэтому, если вы не уверены в происхождении вашего экземпляра TL431, в точности вашего вольтметра, предельном напряжении аккумулятора т.д., лучше выставить немного меньше, 4.1 — 4.15 В, на всякий случай. Это позволит безопасно заряжать банки, не имеющие встроенной платы защиты.

Кто не видел последствия перезаряда литиевых аккумуляторов, на YouTube можете глянуть, довольно поучительно. Наиболее нестабильными были банки первого поколения, они взрывались особенно зрелищно.

↑ Чертёж печатной платы

Плата делалась достаточно компактной, чтобы вместить её в имеющийся пластиковый корпус.

↑ Сборка, испытания

Травим платку, впаиваем детальки. Включаем… и слышим крик розовой птицы обломинго Нет напряжения питания. Знакомая проблема, в китайском трансформаторе сдох термопредохранитель. Пытаюсь доковыряться до него … и повреждаю провод первичной обмотки
Так, спокойно! Можно, конечно, раздербанить сердечник, отмотать витки, спаять, заизолировать… Да ну его, поищу чего-нибудь другое. Удачно попал в руки старый, ещё трансформаторный, зарядник от Nokia. Если верить надписи на корпусе, он выдаёт 3.7 В 355 мА, на самом деле после выпрямителя и конденсатора получается 12 В без нагрузки и 9 В под нагрузкой 130 мА. С этим трансформатором всё заработало как надо, и по габаритам он не больше предыдущего.

↑ Готовое устройство

Осталось поместить девайс в корпус.

↑ Файлы

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Зарядное устройство литиевых аккумуляторов своими руками

Проблема автономного питания электронной аппаратуры встала перед человечеством особенно остро при появлении обилия полупроводниковых элементов. Вместе с развитием электроники появлялись новые виды батареек и аккумуляторов, всё это привело к тому, что сейчас ёмкие литий-ионные аккумуляторы стали использоваться практически повсеместно в портативной электронике. Они обладают по-истине впечатляющими ёмкостями при небольших габаритах, могут выдавать большие токи в нагрузку, а потому находят применение практически везде — хоть в небольших беспроводных наушниках, хоть в автомобильной бортовой сети, где требуются высокие токи и большая ёмкость. К особенностям литий-ионных аккумуляторов также можно отнести их «привередливость» к зарядке — просто так взять и подключить такой аккумулятор к источнику питания, чтобы он сам заряжался не получится. Ток заряда должен быть строго нормирован, а его превышение может грозить аккумулятору выходом из строя. Ток заряда обычного литий-ионного аккумулятора должен быть равен примерно одной-двумя десятым от его ёмкости. Например, аккумулятор ёмкость 1000 мА/ч должен заряжаться током 100-200 мА, это обеспечит наиболее долгий срок его службы. Для того, чтобы контролировать ток заряда, нужна специальная схема, которая будет подключаться входом к источнику питания, а выходом — к заряжаемому аккумулятору. Такую схему достаточно просто собрать самому, он представлена ниже.

В левой части схемы на транзисторе Q1 организован индикатор, который сообщает, зарядился аккумулятор, или ещё нет. Последовательно с питанием схемы стоит резистор R1, через который протекает ток заряда аккумулятора, соответственно, на резисторе падает часть напряжения. Если ток заряда ещё достаточно большой, аккумулятор заряжается, падение напряжение на этом резисторе приоткрывает транзистор Q1, светодиод D1 светится. Как только аккумулятор зарядится до нужного напряжение, ток упадёт до минимальных значений, транзистор Q1 закроется и D1 перестанет светится — зарядка завершена. Время заряда будет напрямую зависеть от тока заряда, например, аккумулятор ёмкостью 1000 мА/ч будет заряжаться током 100 мА около 10 часов, а вот током 200 мА уже 5 часов — в два раза меньше при соответствующем увеличении тока заряда в два раза. Конденсатор С1 на схеме — сглаживающий по питанию, сюда не лишним будет установить параллельно электролитический на 47-100 мкФ и параллельно ему керамический на 100 нФ. После этого питающее напряжение поступает на микросхему-стабилизатор LM317, в цепи регулировки которой стоит уже другая микросхема — TL431. Обе эти микросхемы являются распространёнными, достать их можно в любом магазине радиодеталей, а TL431 встречается даже во многих импульсных сетевых блоках питания. Принцип работы данной хитрой схемы достаточно прост. Сперва аккумулятор заряжается постоянным током, около 100 мА, этот ток задаётся резистором R5 — микросхема TL317 работает в роли стабилизатора тока. Затем, когда аккумулятор уже почти зарядится и его напряжение станет близким к 4,2В, схема начинает работать в роли стабилизатора напряжения, дозаряжая аккумулятор небольшим током. Такой алгоритм заряда наиболее правильный и позволит сохранить ёмкость аккумулятора на долгие года, даже при частых циклах зарядка-разрядка. На схеме также виден подстроечный резистор RV1, который служит для настройки выходного напряжения. После сборки схемы его нужно будет настроить всего один раз, для выставления на выходе схемы напряжения 4,2В без подключенного аккумулятора. Можно установить выходное напряжение на уровне 4,1В, в этом случае схема зарядки будет слегка недозаряжать аккумуляторы, при этом 0,1 вольта не сильно скажется на ёмкости аккумулятора, но позволит значительно продлить ему жизнь. Рассмотрим более подробно, какие компоненты нужно применит для сборки данной схемы.

Микросхемы LM317 и TL431. Первая обязательно должна быть в корпусе ТО-220, так как в процессе работы зарядного устройства она будет значительно нагреваться. На её нагрев, в значительно степени будет влиять ток заряда и напряжение, поступающее на вход схемы. Чем больше напряжение на входе, и чем больше ток — те сильнее будет нагреваться микросхема. Её необходимо установить на радиатор с применением теплопроводной пасты, температура радиаторе при долговременной работе не должна превышать 50-60°C, это хорошо скажется на надёжности зарядного устройства. TL431 можно взять в обычном миниатюрном корпуса ТО-92, она нагреваться не будет. Цоколёвки и вид корпусов микросхем представлен на картинке выше.

Светодиоды — здесь всё просто. Можно применить любые светодиоды на 3В, какой угодно формы и цвета. Наиболее логично будет установить D1 красного цвета, а D2 — зелёного, горение зелёного светодиода будет означать, что схема работает и на её выходе присутствует напряжение. Яркость горения светодиодов задаётся резисторами на схеме, включенными последовательно со светодиодами. Все светодиоды имеют два вывода — анод и катод, соответственно это плюс и минус. Как правило, длинная ножка светодиода — плюс, а короткая — минус, важно не перепутать цоколёвку, иначе светодиоды на будут светится.

Несколько слов про резисторы. Они все могут иметь мощность 0,25Вт, кроме двух R1 и R4, эти резисторы будут стоять в цепи питания, а потому через них будет протекать ток заряда, соответственно, будет рассеиваться мощность. Для них нужно взять резисторы мощностью 1-2Вт, этого будет достаточно для рассеивания лишнего тепла. Важно соблюдать номиналы всех резисторов, от них будут зависеть параметры работы схемы.

Ещё один важный элемент схемы — подстроечный резистор RV1, с помощью которого устанавливается напряжение на выходе. Здесь нужно применить многооборотный резистор, например такой, какой показан на картинке выше — его легко отличить на наличию наверху небольшого желтого винта под отвёртку, он должен быть рассчитан на сопротивление 22 кОм. Многооборотный резистор позволяет очень точно установить напряжение на выходе, вплоть до сотых долей вольта. Несколько слов про процедуру настройки. Сперва схему нужно включить «вхолостую», без аккумулятора, подключив на его место вольтметр. Затем, глядя на показания вольтметра вращать переменный резистор в ту или иную сторону для уменьшения или увеличения напряжение на выходе, установив там 4,1-4,2В. На этом процедура настройки схема будет закончена, можно подключать аккумулятор для зарядки.

Изготавливается схема зарядного на компактной печатной плате, которую затем можно поместить в подходящий корпус. При этом корпус зарядного будет включать в себя контакты либо разъём для питания (7-20В) и провода-крокодилы для подключения заряжаемого аккумулятора. Печатная плата прилагается в конце статьи в архиве, открыть её можно с помощью программ Sprint-Layout либо Proteus.

На картинке ниже показана фотография готовой платы. Обратите внимание, что микросхема LM317 впаивается прямо на плату, а потом вместе с платой крепится на радиатор. Светодиоды можно установить как прямо на плату, так и вывести на проводах на панель корпуса. Таким образом, получилось отличное самодельное зарядное устройство для литий-ионных аккумуляторов, в отличие от своим заводских аналогов, данная схема позволяет вручную настраивать ток заряда, а также напряжение, до которого будут заряжаться аккумуляторы. Стоит обратить внимание, что аккумуляторы очень чувствительны к перезаряду, а потому не стоит подключать в выходу схемы аккумулятор, предварительно на настроив порог подстроечным резистором. Удачной сборки!

Источник