Меню

Переделка блока питания jdt 001

Собираю бюджетный ЛБП из БП от ПК. Без переделок!

Валялся у меня старенький блок питания от компьютера, из которого давно мне хотелось сделать регулируемый блок питания.

А тут как раз и из Китая прилетела посылочка с разными комплектующими. Вот и решил собрать бюджетный вариант ЛБП.

В первую очередь нужно проверить на работоспособность старый БП от ПК. Как это сделать, смотрим коротенькую видео инструкцию:

Далее начинаю подбирать компоненты.

Мне понадобятся:
-понижающий преобразователь с регулировкой силы тока и напряжения.

-два потенциометра на 10К. Из преобразователя выпаю родные, а эти на проводах вынесу на корпус.

-любой ампервольтметр. Я буду использовать который с лева, он еще и ватты рассчитывает.

-так же задействую диодный мост, который я собирал сам (для просмотра статьи по теме диодного моста, нажми на синее словосочетание)

Вот в принципе и все.

Сборка очень лёгкая, повторить которую сможет даже не опытный радиолюбитель.

Будьте очень внимательны, если собираетесь повторять подобную сборку. Все контакты открыты и на некоторых дорожках присутствует высокое напряжение, ОПАСНОЕ для жизни! Соблюдайте технику безопасности!

Собирать буду вот по такой, очень простой, схеме. Нарисованной не для профессионалов! Да, да, диванные эксперты, это я пишу для вас, схема нарисована не для ваших мега мозгов😊 А еще, я даже не оставлю не одной рекламной ссылки на комплектующие, что бы ваши пятые точки задымились совсем! 😂

И так проверили БП, теперь приступаем к его разборке. Снимаем крышку и вижу кучу проводов. Все пучки проводов нужно выпаять из платы, оставить только зеленый. Его соединим с минусом на плате.

Все готово, от лишнего я избавился. И как и говорил ранее, зеленый провод соединил с минусовой дорожкой. Сделал это с обратной стороны, на фото ниже в нижней части видно.

Да забыл сказать, что никаких манипуляций с БП от ПК мы производить не будем. Ни перерезать дорожки, ни допаивать и перепаивать, ничего этого делать не нужно. Только выпаяли кучу проводов.

И вот он момент истины😁
На плате есть большой трансформатор, на фото он желтого цвета. Вот с него и нужно будет снять напряжение.

Собирал я этот БП пару лет назад и тогда не знал, что обычный мультиметр не способен замерить напряжение с транса. Своим мультиметром тогда я нашел самое максимальное напряжение 6 вольт. И в видео это говорил😁. Но это не так, показания не правильные, т.к. обычный мультиметр не способен сделать замер на таких трансформаторах. Нужен или стрелочный измерительный прибор, типа как «Цешки» из прошлого, либо современный мультиметр с функцией TRUE RMS.
В общем если у вас есть правильный прибор, то ищем линию с выходом переменного напряжения от 16 вольт.

Ну а теперь по схеме выше. Впаиваемся к трансформатору и подключаем диодный мост. На выходе получаем 24 вольта постоянного напряжения.

Дале к диодному мосту подключаем понижающий преобразователь. Его я уже переделал, вынес на проводах потенциометры и светодиоды.

Все отлично, можно теперь упаковывать в корпус. Диодный мост и преобразователь я закрепил к верхней крышке на ножках т.к. корпус металлический и что бы ничего не замкнуло.

Вырезал отверстие под дисплей.

Потенциометры я вынес с боку. Т.к. на передней части внутри они упираются в компоненты блока питания. Да забыл еще про одну деталь, это клеммы, я взял разъем под «бананы». В итоге получается вот такая вот красоты😊

Можно было и покрасить корпус, но цвет мне принципиален, оставлю как есть.

Первое включение, все работает! Нигде ничего не замкнуло и не задымилось.

Далее были проведены различные тесты. Которые вы можете посмотреть в видео ниже.

Источник

Переделка блока питания jdt 001

Переделка бп ATX в регулируемыйЕщё одна наглядная пошаговая инструкция по доработке компьютерного блока питания, с целью переделки его в мощный лабораторный регулируемый.

Многие собирают различные радиоэлектронные конструкции и для их использования иногда требуется мощный источник питания. Сегодня расскажу вам, как сделать блок питания с выходной мощностью 250 ватт, и возможностью регулировки напряжения от 8 до 16 вольт на выходе, из блока ATX модели FA-5-2.

Принципиальная схема исходного БП ATX

Преимуществом этого БП является защита по выходной мощности (то есть от КЗ) и защита по напряжению.

Переделка блока ATX будет состоять из нескольких этапов

Переделка блока будет состоять из нескольких этапов

1. Для начала выпаиваем провода, оставляем только серый, чёрный, жёлтый. Кстати, чтобы включить данный блок нужно замкнуть на массу не зелёный (как в большинстве блоков ATX), а серый провод.

2. Выпаиваем из схемы детали, которые стоят в цепях +3.3в, -5в, -12в (+5 вольт пока не трогаем). То что убрать показано красным, а что переделывать — показано синим на схеме:

Выпаиваем из схемы детали, которые стоят в цепях +3.3в, -5в, -12в

После выпаивания получается так:

После выпаивания получается так

3. Далее выпаиваем (убираеи) цепь +5 вольт, диодную сборку в цепи 12в заменить на S30D40C (взятую из цепи 5в).

выводим цепь +5 вольт, диодную сборку в цепи 12в заменить на S30D40C

Ставим подстроечный резистор и переменный резистор со встроенным выключателем так, как показано на схеме:

Ставим подстроечный резистор и переменный резистор со встроенным выключателем

переделка atx 2

Теперь включаем в сеть 220в и замыкаем серый провод на массу, предварительно поставив подстроечный резистор в среднее положение, а переменный в положение при котором на нём будет наименьшее сопротивление. На выходе напряжение должно быть около 8 вольт, увеличивая сопротивление переменного резистора напряжение будет увеличиваться. Но не спешите поднимать напряжение, так как у нас пока нет защиты по напряжению.

4. Делаем защиту по мощности и по напряжению. Добавляем два подстроечных резистора:

Делаем защиту по мощности и по напряжению - схема

5. Индикаторная панель. Добавляем пару транзисторов, несколько резисторов и три светодиода:

Добавляем пару транзисторов, несколько резисторов и три светодиода - схема

Зелёный светодиод загорается при включении в сеть, жёлтый — при наличии напряжения на выходных клемах, красный — при срабатывании защиты.

Зелёный светодиод загорается при включении в сеть БП

Зелёный светодиод загорается при включении в сеть блока питания

Можно также встроить вольтамперметр.

 встроить вольтамперметр в БП - шлейфы

как встроить вольтамперметр в блок напряжения

Настройка защиты по напряжению в блоке питания

Настройка защиты по напряжению выполняется следующим образом: резистор R4 скручиваем в сторону где подсоединена масса, R3 ставим на максимум (большее сопротивление), затем вращая R2 добиваемся нужного нам напряжения — 16 вольт, но ставим на 0.2 вольта больше — 16.2 вольта, медленно поворачиваем R4 до срабатывания защиты, выключаем блок, немного уменьшаем сопротивление R2, включаем блок и увеличиваем сопротивление R2 до получения на выходе 16 вольт. Если при последней операции сработала защита, то вы пересторались с поворотом R4 и придётся всё повторять заново. После настройки защиты лабораторный блок полностью готов к использованию.

Читайте также:  Сварочный инвертор не включается Ремонт своими руками Схема

Переделка бп ATX в регулируемый лабораторный с индикатором

За последний месяц сделал уже три таких блока, каждый обошёлся мне примерно в 500 рублей (это вместе с вольтамперметром, который собирал отдельно за 150 рублей). А один БП продал, как зарядку для машинного аккумулятора, за 2100 рублей, так что уже в плюсе:)

Источник



Доработка блоков питания CODEGEN и других, JNC-подобных.

Данная статья (первый вариант) была написана для моего собственного проекта, который в настоящее время находится в умирающем положении и будет перепрофилирован. Так как я считаю, что статья будет полезна многим людям (я сужу по многочисленным письмам, в том числе и от читателей Вашего ресурса), предлагаю Вам разместить вторую редакцию данного творения.

Надеюсь, это будет интересно Вам и Вашим читателям.

С уважением, Саша Черный.

реклама

Хорошая и стабильная работа компьютера зависит от многих факторов. Не в последнюю, а может и в первую очередь, это зависит от правильного и надежного блока питания. Обычный пользователь прежде всего озабочен выбором процессора, материнской платы, памяти и других комплектующих для своего компьютера. На блок питания внимание обращается мало (если вообще обращается). В результате основным критерием выбора БП является его стоимость и указанная на этикетке заявленная мощность. Действительно, когда на этикетке написано 300 вт – это конечно хорошо, и при этом цена корпуса с БП составляет 18 – 20$ — вообще замечательно. Но не все так просто.

И год и два и три назад цена на корпуса с БП не менялась и составляла те же 20$. А что же менялось? Правильно – заявленная мощность. Сначала 200вт потом 235 – 250 – 300 вт. В следующем году будет 350 – 400 вт. Произошла революция в БП-строении? Ничего подобного. Вам продают одни и те же БП только с разными этикетками. Причем, зачастую 5 летней давности БП с заявленной мощностью 200вт, выдаёт больше чем свежий 300 ваттник. Что поделаешь — удешевление и экономия. Если нам корпус с БП достается за 20$, то, сколько его реальная себестоимость с учетом транспортировки из Китая и 2-3 посредниками при продаже? Наверное, 5-10$. Вы представляете себе, какие туда детали засунул дядюшка Ляо за 5$? И вы ЭТИМ хотите нормально запитать компьютер стоимостью от 500$? Что же делать? Покупать дорогой блок питания за 60 – 80$ это, конечно, хороший выход, когда есть деньги. Но не самый лучший (деньги есть не у всех и не в достаточном количестве). Для тех, у кого нет лишних денег, а есть прямые руки, светлая голова и паяльник – предлагаю несложную доработку китайских БП с целью приведения их в чувство.

Если посмотреть на схемотехнику фирменных и китайских (no name) БП, то можно увидеть, что они очень похожи. Используется одна и та же стандартная схема включения на базе микросхемы ШИМ КА7500 или аналогов на TL494. А в чем же между блоками питания разница? Разница в применяемых деталях, их качестве и количестве. Рассмотрим типичный фирменный блок питания:

Рисунок 1

Видно, что он довольно плотно упакован, отсутствуют свободные места и все детали распаяны. Присутствуют все фильтры, дроссели и конденсаторы.

Теперь рассмотрим типичный БП JNC с заявленной мощностью 300 вт.

Рисунок 2

Бесподобный образец китайской инженерной мысли! Нет ни фильтров (вместо них стоят «специально обученные перемычки»), ни конденсаторов, ни дросселей. В принципе без них тоже все работает – но как! В выходном напряжении присутствует шум переключения транзисторов, резкие выбросы напряжения и значительная его просадка при различных режимах работы компьютера. Какая тут уж стабильная работа.

Вследствие примененных дешевых комплектующих работа такого блока очень ненадежна. Реально выдаваемая безопасная мощность такого БП – 100-120 вт. При большей мощности он просто сгорит и утянет за собой половину компьютера. Как же доработать китайский БП до нормального состояния и сколько реально нам мощности нужно?

Хочется отметить что, сложившееся мнение о высоком энергопотреблении современных компьютеров, немного неверно. Упакованный системный блок на базе Pentium 4 потребляет меньше 200 вт, а на базе AMD ATHLON XP меньше 150 вт. Таким образом, если мы хотя бы обеспечим БП реальные 200-250 вт., то одним слабым звеном в нашем компьютере будет меньше.

реклама

Наиболее критическими деталями в БП являются:

  • Высоковольтные конденсаторы
  • Высоковольтные транзисторы
  • Высоковольтные выпрямительные диоды
  • Высокочастотный силовой трансформатор
  • Низковольтные диодные выпрямительные сборки

Братья китайцы умудряются и здесь экономить. Вместо высоковольтных конденсаторов 470мкф х 200 вольт они ставят 200мкф х 200 вольт. Эти детали влияют на способность блока держать кратковременное пропадание сетевого напряжения и на мощность выдаваемого напряжения БП. Ставят маленькие силовые трансформаторы, которые сильно нагреваются при критических мощностях. А так же экономят на низковольтных выпрямительных сборках, заменяя их на два спаянных вместе дискретных диода. Про отсутствие фильтров и сглаживающих конденсаторов уже говорилось выше.

Попробуем это все исправить. Прежде всего, нужно открыть БП и оценить размер трансформатора. Если он имеет размеры 3х3х3 см и больше, то блок имеет смысл дорабатывать. Для начала надо заменить большие высоковольтные конденсаторы и поставить не меньше 470мкф х 200 вольт. Необходимо поставить все дроссели в низковольтную часть БП. Дроссели можно намотать самому на ферритовом кольце диаметром 1- 1,5 см медным проводом с лаковой изоляцией сечением 1-2 мм 10 витков. Можно так же взять дроссели с неисправного БП (убитый БП можно купить в любой компьютерной конторе за 1-2$). Далее нужно распаять сглаживающие конденсаторы в пустующие места низковольтной части. Достаточно поставить 3 конденсатора 2200мкф х 16 вольт (Low ESR) в цепи +3.3в, +5в, +12в.

Читайте также:  Блоки питания для ноутбуков HP Compaq ProBook 6570b

Типичный вид низковольтных выпрямительных диодов в дешевых блоках такой:

Рисунок 3

или, что хуже, такой

Рисунок 4

Первая диодная сборка обеспечивает 10 ампер на 40 вольт, вторая – 5 ампер мах. При этом на крышке БП написаны следующие данные:

Рисунок 5

Заявлено 20-30 ампер, а реально выдается 10 или 5 ампер. Причем на плате БП предусмотрено место для нормальных сборок, которые там должны стоять:

Рисунок 6

По маркировке видно, что это 30 ампер на 40 вольт – а это уже совсем другое дело! Эти сборки должны стоять на канале +12в и +5в. Канал +3.3в может быть выполнен двумя способами: либо на такой же сборке, или на транзисторе. Если стоит сборка, то ее меняем на нормальную, если транзистор, то оставляем все как есть.

Итак, бежим в магазин или на рынок и покупаем там 2 или 3 (в зависимости от БП) диодные сборки MOSPEC S30D40 (на канал +12 вольт S40D60 – последняя цифра D – напряжение – чем больше, тем на душе спокойнее или F12C20C – 200 вольт ) или аналогичные по характеристикам, 3 конденсатора 2200 мкф х 16вольт, 2 конденсатора 470 мкф х 200 вольт. Все эти детали стоят примерно 5-6$.

После того как мы все поменяли, БП будет выглядеть примерно так:

реклама

Рисунок 7

Рисунок 8

Дальнейшая доработка БП сводится к следующему. Как известно в БП каналы +5 вольт и +12 вольт стабилизируются и управляются одновременно. При установленном +5 вольт реальное напряжение на канале +12 составляет 12,5 вольт. Если в компьютере сильная нагрузка по каналу +5 (система на базе AMD), то происходит падение напряжения до 4,8 вольт, при этом напряжение по каналу +12 становится равным 13 вольтам. В случае с системой на базе Pentium 4 сильнее нагружается канал +12 вольт и там все происходит наоборот. В силу того, что канал +5 вольт в БП выполнен гораздо качественнее, то даже дешевый блок будет без особых проблем питать систему на основе AMD. Тогда как энергопотребление Pentium 4 гораздо больше (особенно по +12 вольтам) и дешевый БП нужно обязательно дорабатывать.

Завышенное напряжение по каналу 12 вольт очень вредно для жестких дисков. В основном нагрев HDD происходит по причине повышенного напряжения (больше чем 12,6 вольт). Для того чтобы уменьшить напряжение 13 вольт достаточно в разрыв желтого провода, питающего HDD, впаять мощный диод, например КД213. В результате напряжение уменьшится на 0.6 вольт и составит 11.6 вольт – 12,4 вольт, что вполне безопасно для жесткого диска.

В результате мы получили нормальный БП, способный отдавать в нагрузку не меньше 250 вт (нормальных, не китайских!!), который к тому же станет гораздо меньше греться.

реклама

Предупреждение. Все, что Вы будете делать со своим БП – Вы делаете на свой страх и риск! Если Вы не обладаете достаточной квалификацией и не можете отличить паяльник от вилки, то не читайте,что здесь написано и тем более не делайте.

Комплексное снижение шума у компьютеров

Как бороться с шумом? Для этого у нас должен быть правильный корпус с горизонтальным расположением блока питания (БП). Такой корпус имеет большие габариты, но гораздо лучше выводит излишнее тепло наружу, так как БП расположен над процессором. Имеет смысл поставить на процессор кулер с вентилятором размерами 80х80, например серии Titan. Как правило, большой вентилятор при одинаковой производительности с маленьким, работает на меньших оборотах и издает меньше шума. Следующим шагом станет понижение температуры процессора при простое или маленькой нагрузке.

Как известно, большую часть времени процессор компьютера простаивает в ожидании реакции пользователя или программ. В это время процессор просто зря гоняет пустые циклы и нагревается. Бороться с этим явлением призваны программы охладители или софт-кулеры. В последнее время эти программы даже стали встраивать в БИОС материнской платы (например, EPOX 8KRAI) и в операционную систему Windows XP. Одна из наиболее простых и эффективных программ – это VCOOL. Эта программа при работе процессора AMD выполняет процедуру Bus disconnect – отключение шины процессора при простое и снижение тепловыделения. Поскольку простой процессора занимает 90% времени, то охлаждение будет очень существенное.

Здесь мы подходим к пониманию того, что вращение вентилятора кулера на полной скорости для охлаждения процессора нам не нужно. Как понизить обороты? Можно взять кулер с регулировкой оборотов выносным регулятором. А можно воспользоваться программой управления скоростью вентилятора – SPEEDFAN. Эта программа замечательна тем, что в ней можно настроить обороты вентилятора в зависимости от нагрева процессора путем задания температурного порога. Таким образом, при старте компьютера, вентилятор имеет полные обороты, а при работе в Windows с документами и интернетом скорость вентилятора автоматически снижается до минимальных.

реклама

Комбинация программ VCOOL и SPEEDFAN позволяет при работе в Word и Интернет вообще останавливать кулер и при этом температура процессора не поднимается выше 55С ! (Athlon XP 1600). Но у программы SPEEDFAN есть один недостаток – она работает не на всех материнских платах. В таком случае понизить скорость вентилятора можно, если перевести его на работу с 12 вольт на 7 или даже на 5 вольт. Обычно кулер присоединяется к материнской плате с помощью трехконтактного разъема. Черный провод это земля, красный +12, желтый — датчик оборотов. Для того, чтобы перевести кулер на питание 7 вольт, нужно черный провод вытащить из разъема и вставить в свободный разъем (красный провод +5вольт) идущий от БП, а красный провод от кулера вставить в разъем БП с желтым проводом (+12).

Читайте также:  ТЕТРОН 15400М Импульсный источник питания 15 вольт 400 ампер

Рисунок 9

Желтый провод от кулера можно оставить в разъеме и вставить в материнскую плату, что бы мониторились обороты вентилятора. Таким образом, мы получаем 7 вольт на кулере (разница между +5 и +12 вольт составляет 7 вольт). Что бы получить 5 вольт на кулере достаточно присоединить только красный провод кулера к красному проводу БП, а два оставшихся провода оставить в кулерном разъеме.

Таким образом, мы получили процессорный кулер со сниженными оборотами и низким шумом. При значительном снижении шума теплоотведение от процессора не снижается или снижается незначительно.

Следующий шаг – снижение тепловыделения жесткого диска. Поскольку главный нагрев диска происходит из-за повышенного напряжения по шине +12 вольт (реально здесь всегда 12.6 – 13,2 вольт), то здесь все делается очень просто. В разрыв желтого провода, который питает винчестер, впаиваем мощный диод типа КД213. На диоде происходит падение напряжения примерно 0,5 вольт, что благоприятно сказывается на температурном режиме винчестера.

реклама

Далее займемся блоком питания. Рекомендуется вентилятор БП перевести на питание с 12 на 7 вольт. По аналогии с процессорным кулером перепаиваем внутри БП вентилятор (черный на +5 вольт, красный на +12вольт)

А может пойти еще дальше? Перевести вентилятор БП на 5 вольт? Просто так перевести не получится – нужна доработка БП. А заключается она в следующем. Как известно, основной нагрев внутри БП испытывает радиатор низковольтной части (диодные сборки) – порядка 70-80 С. Причем наибольший нагрев испытывает сборка +5в и +3.3в. Высоковольтные транзисторы у правильного блока ( эта часть БП практически у 95% БП правильна, даже у китайских) греются до 40-50 С и их мы трогать не будем.

Очевидно, что один общий радиатор для трех шин питания слишком мал. И если при работе вентилятора на больших оборотах радиатор еще нормально охлаждается, то при снижении оборотов происходит перегрев. Что делать? Разумно было бы увеличить размер радиатора или вообще разделить шины питания по разным радиаторам. Последним мы и займемся.

Для отделения от основного радиатора был выбран канал +3.3в., собранный на транзисторе. Почему не +5в? Сначала так было и сделано, но обнаружились пульсации напряжения (сказалось влияние проводов, которыми были удлинены выводы диодной сборки +5в). Так как канал +3.3в. питается от +5в., то пульсаций уже нет.

Для радиатора была выбрана алюминиевая пластина размером 10х10 см, к которой был прикручен транзистор канала +3.3в. Выводы транзистора были удлинены толстым проводом длиной 15 см. Сама пластина была прикручена через изолирующие втулки к верхней крышке БП. Важно, чтобы пластина радиатора не соприкасалась с крышкой БП и радиаторами силовых диодов и транзисторов.

реклама

Рисунок 10

Рисунок 11

Рисунок 12

Источник

Переделка бп ATX в регулируемый

Переделка бп ATX в регулируемыйЕщё одна наглядная пошаговая инструкция по доработке компьютерного блока питания, с целью переделки его в мощный лабораторный регулируемый.

Многие собирают различные радиоэлектронные конструкции и для их использования иногда требуется мощный источник питания. Сегодня расскажу вам, как сделать блок питания с выходной мощностью 250 ватт, и возможностью регулировки напряжения от 8 до 16 вольт на выходе, из блока ATX модели FA-5-2.

Принципиальная схема исходного БП ATX

Преимуществом этого БП является защита по выходной мощности (то есть от КЗ) и защита по напряжению.

Переделка блока ATX будет состоять из нескольких этапов

Переделка блока будет состоять из нескольких этапов

1. Для начала выпаиваем провода, оставляем только серый, чёрный, жёлтый. Кстати, чтобы включить данный блок нужно замкнуть на массу не зелёный (как в большинстве блоков ATX), а серый провод.

2. Выпаиваем из схемы детали, которые стоят в цепях +3.3в, -5в, -12в (+5 вольт пока не трогаем). То что убрать показано красным, а что переделывать — показано синим на схеме:

Выпаиваем из схемы детали, которые стоят в цепях +3.3в, -5в, -12в

После выпаивания получается так:

После выпаивания получается так

3. Далее выпаиваем (убираеи) цепь +5 вольт, диодную сборку в цепи 12в заменить на S30D40C (взятую из цепи 5в).

выводим цепь +5 вольт, диодную сборку в цепи 12в заменить на S30D40C

Ставим подстроечный резистор и переменный резистор со встроенным выключателем так, как показано на схеме:

Ставим подстроечный резистор и переменный резистор со встроенным выключателем

переделка atx 2

Теперь включаем в сеть 220в и замыкаем серый провод на массу, предварительно поставив подстроечный резистор в среднее положение, а переменный в положение при котором на нём будет наименьшее сопротивление. На выходе напряжение должно быть около 8 вольт, увеличивая сопротивление переменного резистора напряжение будет увеличиваться. Но не спешите поднимать напряжение, так как у нас пока нет защиты по напряжению.

4. Делаем защиту по мощности и по напряжению. Добавляем два подстроечных резистора:

Делаем защиту по мощности и по напряжению - схема

5. Индикаторная панель. Добавляем пару транзисторов, несколько резисторов и три светодиода:

Добавляем пару транзисторов, несколько резисторов и три светодиода - схема

Зелёный светодиод загорается при включении в сеть, жёлтый — при наличии напряжения на выходных клемах, красный — при срабатывании защиты.

Зелёный светодиод загорается при включении в сеть БП

Зелёный светодиод загорается при включении в сеть блока питания

Можно также встроить вольтамперметр.

 встроить вольтамперметр в БП - шлейфы

как встроить вольтамперметр в блок напряжения

Настройка защиты по напряжению в блоке питания

Настройка защиты по напряжению выполняется следующим образом: резистор R4 скручиваем в сторону где подсоединена масса, R3 ставим на максимум (большее сопротивление), затем вращая R2 добиваемся нужного нам напряжения — 16 вольт, но ставим на 0.2 вольта больше — 16.2 вольта, медленно поворачиваем R4 до срабатывания защиты, выключаем блок, немного уменьшаем сопротивление R2, включаем блок и увеличиваем сопротивление R2 до получения на выходе 16 вольт. Если при последней операции сработала защита, то вы пересторались с поворотом R4 и придётся всё повторять заново. После настройки защиты лабораторный блок полностью готов к использованию.

Переделка бп ATX в регулируемый лабораторный с индикатором

За последний месяц сделал уже три таких блока, каждый обошёлся мне примерно в 500 рублей (это вместе с вольтамперметром, который собирал отдельно за 150 рублей). А один БП продал, как зарядку для машинного аккумулятора, за 2100 рублей, так что уже в плюсе:)

Источник