Меню

Розетка зарядное устройство для шуруповерта

Зарядные устройства для аккумуляторного инструмента 47товаров

Блок питания ЗУ ДА-10/10,8 ЭР (Li-ion) арт. 92.02.02.00.00

Код товара: 92.02.02.00.00

Зарядное устройство Makita DC1414

Код товара: 193864-0

Мощность: 220 В | Типы заряжаемых аккумуляторов: NiCd, NiMH

Зарядное устройство Интерскол ДА-10-10,8 ЭР (Li-ion)

Код товара: 2401 001

Мощность: 220 В | Типы заряжаемых аккумуляторов: Li-ion

Зарядное устройство Makita DC1804

Код товара: 193827-6

Мощность: 220 В | Типы заряжаемых аккумуляторов: NiCd, NiMH

Адаптер зарядного устройства ДА-10/14,4 ЭР (Li-ion) 93.02.01.00.00

Код товара: 93.02.01.00.00

Защита аккумулятора Makita 194649-7

Код товара: 194649-7

Адаптер Makita ADP04

Код товара: 193947-6

Лямка к ремню для аккумулятора 4850 490 0301

Код товара: 4850 490 0301

Зарядное устройство Makita 194588-1

Код товара: 194588-1

Мощность: 220 В | Типы заряжаемых аккумуляторов: Li-ion

Зарядное устройство Makita DC1822

Код товара: 193439-5

Мощность: 12 В | Типы заряжаемых аккумуляторов: NiCd, NiMH

Зарядное устройство Makita DC18SE

Код товара: 194621-9

Мощность: 12 В | Типы заряжаемых аккумуляторов: NiCd, NiMH, Li-ion

Зарядное устройство Makita DC18SF

Код товара: 196430-2

Мощность: 220 В | Типы заряжаемых аккумуляторов: Li-ion

Зарядное устройство Makita DC24SC

Код товара: 194164-1

Мощность: 220 В | Типы заряжаемых аккумуляторов: NiCd, NiMH, Li-ion

Крышка для аккум техники 4850 602 0900

Код товара: 4850 602 0900

Зарядное устройство Интерскол ДА-12ЭР-01(02) 1,5А/ч 12В Li-ion Домашний мастер

Код товара: 2401.014

Сумочка к ремню для аккумулятора 4850 491 0101

Код товара: 4850 491 0101

Зарядное устройство Makita DC7021

Код товара: 630602-4

Мощность: 220 В | Типы заряжаемых аккумуляторов: NiCd, NiMH, Li-ion

Зарядное устройство STIHL AL 300

Код товара: 4850 430 5500

Зарядное устройство DC18RC 195915-5

Код товара: 195915-5

Зарядное устройство Интерскол ДА-14,4ЭР 1,5А/ч 14,4В Li-ion Домашний мастер

Код товара: 2401.015

Зарядное устройство Интерскол ЗУ-1,5/18 для 1,5А/ч 18В Li-ion (Домашний мастер/АПИ)

Код товара: 2401.016

Зарядное устройство DC1850 193840-4

Код товара: 193840-4

Тестер для аккумуляторов BTC04 198038-8

Код товара: 198038-8

Зарядное устройство DC1851 195916-3

Код товара: 195916-3

  • Отзывы
    • Отзывы оптовых клиентов
    • Отзывы на Яндекс.Маркет
  • Контакты
    • Адреса магазинов
  • О компании
    • Производство
    • Команда
    • Партнеры
    • География
    • Реквизиты
    • Вакансии
    • Каталог 2020
  • Услуги
    • Пошив под заказ
    • Нанесение логотипов
    • Ремонт инструмента
  • Оптовые поставки
    • Спецодежда оптом
    • Рабочая обувь оптом
    • СИЗ оптом
    • Запчасти оптом
  • Алапаевск
  • Белорецк
  • Березники
  • Богданович
  • Братск
  • Верхняя Салда
  • Губаха
  • Губкинский
  • Екатеринбург
  • Златоуст
  • Ирбит
  • Иркутск
  • Камышлов
  • Краснотурьинск
  • Красноуральск
  • Красноярск
  • Кыштым
  • Магнитогорск
  • Месягутово
  • Миасс
  • Нижний Тагил
  • Новосибирск
  • Новый Уренгой
  • Пермь
  • Североуральск
  • Серов
  • Соликамск
  • Стерлитамак
  • Сургут
  • Сухой Лог
  • Тарко-Сале
  • Тобольск
  • Тюмень
  • Уфа
  • Учалы
  • Челябинск

Для заказа в Интернет-магазине не обязательно регистрироваться.

Если Вы — представитель юридического лица, обратитесь к Вашему менеджеру, чтобы зарегистрировать учетную запись.

Оставьте свои координаты и мы свяжемся с вами в ближайшее время

Источник

Розетка зарядное устройство для шуруповерта

  1. Виды зарядных устройств
  2. Аналоговые со встроенным блоком питания
  3. Аналоговые с внешним блоком питания
  4. Импульсные
  5. Типы применяемых батарей
  6. Самодельные приборы для заряда
  7. Схема на двух транзисторах
  8. Использование специализированной микросхемы
  9. Зарядка шуруповерта без зарядного устройства

Нередко зарядное устройство для шуруповерта, прилагающееся к прибору, отличается низким качеством, поэтому через короткий период выходит из строя или же не заряжает быстро. Для устранения этой проблемы и продления срока эксплуатации шуруповерта можно приобрести зарядку с подходящими характеристиками или изготовить ее самостоятельно.

Зарядное устройство для шуруповерта

Виды зарядных устройств

На рынке представлено немало разновидностей зарядников для аккумуляторных шуруповертов, различающихся принципом работы, ценой и рядом других параметров. Выделяют 2 главные группы таких устройств: аналоговые и импульсные. Аналоговые оснащаются встроенным или внешним источником питания.

Аналоговые со встроенным блоком питания

Шуруповерт, имеющий встроенный АКБ, не способен работать продолжительный период. После разрядки аккумулятора для завершения работы требуется подключение прибора к сети.

Функционирование аналогового устройства, оснащенного встроенного блоком питания, не отличается сложностью. Зарядка работает как стабилизатор. Он функционирует по компенсационному принципу. Излишняя энергия может быть отведена за счет выделения тепла. Рассеивание тепла в устройстве обеспечивает медный радиатор, подсоединенный к микросхеме.

Встроенный в зарядку выходной трансформатор способен понижать поступающее с сети напряжение с 220 В до 20 В. Затем посредством диоксидного моста осуществляется выпрямление тока, который поступает в конденсатор, а затем стабилизатор КР 142ЕН. Здесь напряжение понижается до 12 вольт.

Стабилизатор КР 142ЕН

Дополнительно устанавливаются резисторы. Эти простые зарядники — дешевые, не оснащаются автоматикой, поэтому контролировать процесс и длительности зарядки аккумулятора должен пользователь. Часто они ломаются из-за перегрева.

Аналоговые с внешним блоком питания

Этот тип устройств также отличается простым строением. Оно представляет собой набор, включающий зарядник и сетевой блок питания. Зарядное устройство имеет следующие компоненты:

  • трансформатор;
  • диодный мост;
  • конденсатор;
  • выпрямитель.

На выходе он обеспечивает 18 В. Управление устройством обеспечивается за счет небольшой платы контроллера, размер которой не превышает нескольких сантиметров. Такие приборы не включают систему, отводящую тепло. Это приводит к их быстрой поломке из-за перегрева. Недостатком зарядников с внешним блоком питания является необходимость продолжительного подключения к нему шуруповерта.

Аналоговая зарядка

При использовании во время проведения небольших ремонтных работ достаточно поставить шуруповерт заряжаться на ночь. Полученного заряда китайскому шуруповерту хватит на 3-5 часов в зависимости от качества батареи, а более мощные приборы марки «Зубр» и других производителей смогут проработать не менее 1-2 часов.

Импульсные

Импульсные шуруповерты высоко ценятся профессионалами. Они мобильны и имеют высокую мощность, что облегчает выполнение любого объема работ. Часто оснащаются сразу 2 комплектами батарей. Импульсные зарядные устройства имеют особое строение. Они снабжены специфической системой управления, обеспечивающей зарядку аккумулятора всего за 1 час на 100%.

Импульсные шуруповерты считаются самыми совершенными из представленных на рынке. Они отличаются небольшими размерами, но при этом подают высокий ток до 25 В. Оснащаются системой защиты, поэтому не перегреваются и не выходят из строя из-за перепадов напряжения. Наиболее частой причиной их поломки является механическое повреждение в результате падения и попадание влаги внутрь корпуса. Единственным недостатком импульсных зарядок выступает их высокая цена.

Импульсный шуруповерт

Типы применяемых батарей

Наиболее часто в шуруповерты выполняется установка следующих видов аккумуляторных батарей:

  • никель-кадмиевые;
  • никель-металлогидридные;
  • литий-ионные.

Никель-кадмиевые АКБ не часто устанавливаются в шуруповертах. Они заряжаются в быстром режиме, их цена не высока. Такие аккумуляторы имеют высокую нагрузочную способность. К их положительным качествам также относится способность отдавать энергию даже при работе в условиях минусовой температуры.

Никель-металлогидридные аккумуляторы имеют лучшие характеристики в сравнении с никель-кадмиевыми. Их скорость саморазряда намного меньше. Кроме того, такие АКБ не имеют эффекта памяти. Они считаются более экологичными и безопасными, т.к. не содержат кадмия, отличающегося токсичностью.

Никель-металлогидридные аккумуляторы

Литий-ионные батареи имеют низкий уровень саморазряда и высокую емкость. Они плохо выдерживают глубокий разряд и повышение температур. Наиболее часто их устанавливают в профессиональные модели. При перегреве велика вероятность взрыва или протекания АКБ, а при глубоком разряде есть вероятность, что первоначальная емкость уже не восстановится.

К положительным качествам литий-ионных батарей относятся отсутствие эффекта памяти и возможность работы в условиях отрицательных температур. Часто такие аккумуляторы оснащаются зарядным устройствам, имеющим микроконтроллер, препятствующий перезаряду. Это повышает срок службы прибора. Единственным явным недостатком литий-ионных батарей является высокая цена.

Самодельные приборы для заряда

При необходимости 12- или 18-вольтовое зарядное устройство можно изготовить в домашних условиях. Для этого можно воспользоваться как специализированными микросхемами, так и сделать основу самостоятельно.

Схема на двух транзисторах

В домашних условиях можно быстро изготовить зарядник, применяя транзисторы КТ361 и КТ829. Величина тока заряда будет корректироваться элементом КТ361. Затем ток будет подаваться к коллектору, который должен быть оснащен светодиодной лампочкой. Кроме того, первый транзистор управляет работой элемента КТ829.

Принцип работы такого устройства крайне прост. Увеличение емкости батареи провоцирует уменьшение тока заряда, что приводит к постепенному затуханию светодиода. Момент заряда фиксируется путем замера напряжения. Нужный калибр выставляется на переменном резисторе на 10 кОм. Для проверки показателей нужно установить вольтомметр на клеммы неподключенной АКБ.

Использование специализированной микросхемы

В продаже имеются универсальные микросхемы MAXIM MAX713, которые позволяют добиться хороших характеристик заряда для приборов на 18 В. Они заряжают и никель-металлогидридные, и никель-кадмиевые батареи. При этом доступен режим быстрой зарядки. Такая микросхема отслеживает состояние АКБ и при необходимости снижает силу тока. При этом после окончания зарядки микросхема почти не потребляет ток. Она способна прерывать зарядку. Блока на 1А достаточно для обеспечения необходимого напряжения.

Читайте также:  Обзор Samsung EP TA800 EP TA800XBEGWW

Зарядка шуруповерта без зарядного устройства

Если времени на приобретение зарядника или его самостоятельное изготовление нет, можно пополнить батарею шуруповерта, используя блок питания от ноутбука или зарядку для автомобиля. В этом случае с помощью клемм и проводов проводится подключение блока питания к аккумулятору, соблюдая полярность. Процесс восполнения емкости занимает 30 минут. При этом важно контролировать температуру АКБ.

Источник

Ремонт зарядного блока шуруповерта самостоятельно

Еще совсем недавно главным помощником в руках мастера была дрель, но сегодня ее заменил шуруповерт. Этот портативный электроинструмент применяется для завинчивания и вывинчивания крепежных элементов, сверления отверстий и даже шлифования поверхностей. Однако инструмент по разным причинам ломается, и как его отремонтировать, описано здесь. В описании рассмотрим, как выполняется ремонт зарядного устройства для шуруповерта, и можно ли восстановить целостность электронного блока.

Как выявить неисправность зарядного устройства

Блок питания шуруповерта

Перед тем, как браться за ремонт зарядки шуруповерта, нужно проверить, действительно ли причиной отсутствия заряда аккумулятора является блок питания. Ведь намного чаще из строя первой выходит батарея инструмента. Как проверить аккумулятор на исправность, подробно описано в этом материале. Самый простой способ убедиться в том, что требуется ремонт зарядного устройства шуруповерта — это включить в розетку блок питания, и посмотреть на индикаторы. Обычно каждый зарядный блок имеет индикаторную подсветку, по которой выявляется восстановление заряда аккумулятора (заряжает ли блок аккумуляторную батарею). Если индикаторы не светятся, значит блок с высокой вероятностью неисправен, и требуется его ремонт. Однако и здесь не нужно делать поспешные выводы. Чтобы убедиться в неработоспособности блока зарядки от шуруповерта, надо проделать такие действия:

  1. Взять в руки тестер или мультиметр
  2. Включить блок питания в розетку
  3. Выставить на мультиметре режим измерения постоянного напряжения. Величина напряжения зависит от самого инструмента. Чтобы узнать величину выходного напряжения, нужно осмотреть наклейку с описанием. Обычно величина выходного напряжения находится в диапазоне от 9 до 24 В
  4. Красным щупом мультиметра требуется прикоснуться к положительному контакту зарядного блока, а черным к отрицательному (или минусу)
  5. Обратить внимание на экран мультиметра, и значения, которые он показывает

Ремонт зарядки шуруповерта

В зависимости от показаний мультиметра можно делать соответствующие выводы:

  • Если показания отсутствуют, то есть на экране цифра «0» — блок нерабочий, и поэтому требует ремонта или замены
  • Если показания мультиметра соответствуют значению, указанному на блоке питания — устройство исправно, и причина неработоспособности мультиметра скрывается с большой вероятностью в батарее инструмента
  • Если показания на приборе ниже значений, которые указаны на блоке питания, то есть при норме выходного напряжения 9В или 12В, прибор показывает 3В, 5В или 7В (или другие значения) — в зарядном блоке из строя вышли элементы электроники, поэтому понадобится небольшой ремонт

Проверка зарядки шуруповерта на исправность

Есть еще один вариант развития событий — прибор показывает значения выше номинала, указанного на зарядном блоке. Такие ситуации редкостные, и если блок выдает напряжение, выше чем указано на блоке питания, то это может вывести из строя батарею или снизить ее ресурс. В таком случае нужно также прибегнуть к ремонту зарядного от шуруповерта. Если проверка мультиметром подтверждает неисправность зарядного блока, значит пора приступать к поиску неисправности.

Что может сломаться в зарядном от шуруповерта

О том, что ломается в зарядке шуруповерта, известно специалистам, которые ежедневно сталкиваются с проблемой неработоспособности инструмента. Покупать новую зарядку для шуруповерта нерационально, поэтому если батарея электроинструмента не набирает заряд, значит надо начать ремонт с поиска причины поломки.

Причинами неработоспособности зарядных блоков аккумуляторов являются следующие детали и механизмы:

  1. Предохранитель — все электроприборы, которые собираются не «в подвале», имеют защитные элементы, и одним из таковых является предохранитель. Он защищает плату зарядника от перенапряжений, блуждающих токов, коротких замыканий и т.п. Для этого в конструкции схемы применяется предохранитель, рассчитанный на соответствующий номинал тока, величина которого зависит от напряжения аккумулятора. Обычно его номинал составляет 5А, и размещается он сразу после трансформатора перед выпрямительным мостом. Предохранитель имеет цилиндрическую конструкцию из прозрачного стекла со стальными контактами по бокам. Внутри расположена «волосинка», которая рассчитана на пропускание тока пределом до 5А (на разных моделях величина силы тока может отличаться)
  2. Выпрямитель или диодный мост — если предохранитель исправен, а как его проверить, описано ниже, то переходим к рассмотрению диодного моста. Это четыре диода, которые предназначены для выпрямления тока из переменного, поступающего из сети в постоянный, требуемый для зарядки аккумулятора. Чтобы починить выпрямитель, понадобится выпаять неисправный диод или все диоды, и заменить их
  3. Конденсатор — это большой цилиндрический бочонок, который очень часто становится причиной выхода из строя прибора. Конденсатор вздувается, в результате чего выходит из строя предохранитель, и часто это влечет за собой еще выгорание диодного моста
  4. Высоковольтный транзистор инвертора, который очень часто выходит из строя на зарядных блоках шуруповертов, рассчитанных на 220В

Какой элемент не вышел бы из строя, но для начала нужно убедиться в том, что поломка заключается именно в самом блоке питания. Ведь часто грешат на блок питания, хотя на самом деле уже давно пора заменить батарею. Если собираетесь произвести ремонт зарядки шуруповерта, тогда начинать следует с проверки устройства на неисправность. Выше описана инструкция, как проводится проверка самого блока, поэтому теперь найдем неисправный элемент, который и является причиной неработоспособности зарядки.

Как найти поломку в зарядном блоке шуруповерта

Что нужно для того, чтобы найти поломку в зарядном блоке шуруповерта, знают немногие, поэтому подробно рассмотрим этот процесс. Начинать следует с разборки корпуса зарядного, но делается это исключительно на отключенном от сети устройстве. Убедитесь в том, что вилка прибора не подключена к розетке, и только после этого начинайте разбирать конструкцию корпуса.

Плата блока питания шуруповерта

Чтобы добраться до внутренности зарядки шуруповерта, ремонт которой выполняется, необходимо изначально выкрутить 3-4 или 6 винтов, фиксирующих крышку. Количество винтов зависит от модели шуруповерта и самого блока питания. Как только будет разобран корпус, перед глазами появится картина следующего вида, как показано на фото ниже.

Что со всем этим делать? Начинать ремонт зарядки шуруповёрта нужно с выявления неисправного элемента или узла. Для начала выполняются следующие действия:

  • Проводится осмотр. Если имеются следы нагара, то поломка найдена, и можно приступать к ее устранению, однако не стоит торопиться. Ведь наличие нагара на одном элементе могло послужить выходом из строя других деталей. Чтобы их отыскать, нужно проделать следующие действия, поэтому читаем дальше
  • Вооружаемся тестером, и, установив переключатель в режим прозвонки, прикасаемся щупами к выводам предохранителя. Как он выглядит, показано выше на фото. Если тестер пищит, значит, предохранитель исправен, и поломка в другом. Вспоминаем нашу первоначальную проверку устройства на исправность — если показания тестера были положительными (а не нулевыми), значит, предохранитель можно не проверять, и причина в другом. Если показания тестера нулевые, то предохранитель проверяется в первую очередь
  • Следующим на очереди надо проверить конденсатор. Его неисправность можно выявить по форме — если он вздулся, то ремонт зарядки шуруповерта можно закончить, заменив сгоревший элемент. Перед тем как выпаивать, рекомендуется убедиться в том, что элемент действительно неисправен. В помощь снова берем мультиметр, только теперь переключатель устанавливаем в режим измерения сопротивления, и щупами прикасаемся к выводам устройства. Показывает «0», значит нужно заменить конденсатор и «дело в шляпе»
  • Часто выход из строя конденсатора влечет за собой перегорание диодного моста. Из строя могут выйти все диоды или некоторые, но в любом случае, их стоит проверить. Ниже на фото показано, как выглядит конденсатор и диоды. Проверить исправность диодов можно путем постановки мультиметра в режим измерения постоянного напряжения. Для этого поочередно прикасаемся щупами к выводам диодов. В одном направлении диоды должны пропускать напряжение, и показывать соответствующее значение на приборе. После этого нужно поменять полярность, и снова прозвонить выводы. Если они пропускают в обратном направлении, значит следует заменить соответствующие элементы. Если ни один не пропускает, значит, они целые и не требуют замены
  • Проверка дросселя или резистора также проверяется при помощи прозвонки или измерения сопротивления. Если прозвонка не пищит, значит, резистор неисправен, и требуется его замена. Все остальные элементы из строя выходят редко (если только это не удар молнии в электросети, после которого выгорает вся плата напрочь), поэтому обычно на этом мероприятия по поиску неисправных элементов завершаются
Читайте также:  Зарядное устройство Cablexpert USB 2А MP3A PC 25 1046268

Внешний вид платы зарядки шуруповерта

Найденные неисправные элементы нужно заменить, но как проводится ремонт зарядного устройства шуруповерта, в деталях описано ниже.

Как отремонтировать зарядное устройство шуруповерта

Когда разобран блок питания и найдены вышедшие из строя элементы, то провести ремонт зарядки шуруповерта, не составит большого труда. Для этого понадобится вооружиться паяльником, а также флюсом и припоем, после чего приступать к делу.

Для того чтобы провести ремонт зарядного устройства для шуруповёрта своими руками понадобится еще новые элементы, которые нужно установить, вместо вышедших из строя — это предохранитель, резисторы, диоды и конденсатор. Стоят эти элементы копейки, а если у вас в распоряжении имеются старые зарядные блоки или микросхемы, то их можно выпаять оттуда. Когда все инструменты и элементы готовы, можно приступать к ремонту.

  1. Для начала требуется выпаять или извлечь предохранитель. В зависимости от модели блока питания, предохранители в нем могут быть вставными или припаиваться. Даже если это вставной предохранитель, а вам удалось найти только тот, который с ножками, то вставки нужно выпаять из платы и вместо них к контактам припаять предохранительный элементплата зарядного блока шуруповерта
  2. Если вздулся и не работает конденсатор, то его тоже надо выпаять, и заменить. При выпаивании не забудьте посмотреть, какие ножки, где располагаются. Это очень важно, иначе элемент будет работать неправильно, что приведет к повторному выходу из строя. Положительный контакт конденсатора «плюс» должен соединяться в цепочке с катодами диодов. Для того чтобы понимать, о чем речь, ниже приведена схема, на которой выделен интересующий участок. При установке нового конденсатора нужно подобрать его по параметрам, которые имеет вышедший из строя элементСхема блока питания
  3. Если из строя вышел диодный мост, то нужно выпаять диоды, и припаять их. При этом также надо учитывать, что диоды должны быть припаяны в правильном положении — анод на вход высоковольтной части, а катод на низковольтную часть. Если ориентироваться на схему, которая представлена выше, то трудностей с припаиванием элементов не возникнет

Если неисправен резистор, транзистор или другие элементы, то они также подлежат замене. Самая большая трудность, с которой можно встретиться при ремонте зарядного шуруповерта — это выход из строя микроконтроллера. Еще из строя может выйти термистор, который расположен в конструкции первичной обмотки трансформатора. Его назначение — это ограничение и снижение пускового тока. Термистор способствует заряду конденсаторов, которые стоят на входе схемы. Как отремонтировать зарядный блок шуруповерта, если из строя вышел термистор, описано подробно в видеоролике.

Если вышел из строя данный элемент, то проще купить новый блок, так как найти аналогичный элемент очень трудно, и даже если удастся, то для припаивания понадобится воспользоваться специальным феном.

Ремонт зарядки шуруповерта микроконтроллер

После проведения несложного ремонта зарядного устройства шуруповерта, нужно изначально проверить его работоспособность, и только после этого можно подключать батарею. Как проверить работоспособность отремонтированного зарядного блока — включить его в розетку (только предварительно установите на место крышку), и к выводам подключить щупы мультиметра. Соответствующие значения означают, что прибор работает, и может применяться. Теперь ваш «шурик» спасен, и может прослужить вам еще очень долго.

Подводя итог, надо отметить, что долго хранить батарею разряженной нельзя, и если ваш зарядный блок от шуруповерта сломался, то приступать к его ремонту нужно немедленно, иначе откладывание этого процесса в долгий ящик не приведет ни к чему хорошему, а только поспособствует необходимости покупки нового аккумулятора вдобавок к заряднику. Кстати, если не удается отремонтировать зарядное от шуруповерта или устройство было утеряно, и найти в продаже такое невозможно, то решить вопрос поможет изготовление зарядного устройства своими руками. Однако для этого понадобятся некоторые познания в электротехнике.

Источник



Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Читайте также:  Схемы распайки для зарядных устройств

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Источник

Зарядное Устройство для любого шуруповерта и не только

В этой статье рассмотрим проект универсального источника питания, который может быть использован в качестве зарядного устройства для портативных электроинструментов и не только.

Особенность такого источника заключается в том, что он относительно простой и самое важное имеется стабилизация, как выходного напряжения, так и тока, то есть с его помощью можно заряжать и литий-ионные аккумуляторы.

Проектируя его я ставил задачу сделать универсальное, зарядное устройство для шуруповерта, поэтому диапазон выходного напряжения где-то от 11 до 17 вольт с возможностью регулировки, а ток до 1,3 ампер, также с возможностью регулировки. Этого вполне достаточно для зарядки наиболее ходовых электроинструментов 12, 14,4 и 16,8 вольта, но как уже сказал схема универсальна, выходное напряжение и ток можно сделать иными.

Устройство питается непосредственно от сети, снабжены всеми необходимыми защитами, включая защиту от коротких замыканий и перегрева.

Схема состоит из двух основных частей, сетевого понижающего импульсного блока питания и узла стабилизации тока и напряжения, за счет импульсного принципа преобразования устройство имеет высокий кпд, малые размеры и вес.

Источник питания построен на основе специализированной микросхемы TNY267 или 268, именно от выбора микросхемы зависит мощность зарядного устройства — это целая линейка специализированных микросхем, которые находят широкое применение во всевозможных зарядных устройствах и адаптеров питания.

Самая мощная из этой линейки TNY268 на основе которой можно построить блоки с мощностью до 23 ватт, фактически схема сетевого преобразователя может быть любой, хоть на сотни ватт, если в этом есть необходимость, важно чтобы преобразователь имел линию обратной связи.

Как мы знаем, для того чтобы обеспечить полноценную стабилизацию тока и напряжения, шим контроллер, на основе которого построен преобразователь, должен иметь два усилителя ошибки, например TL494. Особенностью нашей схемы является то, что стабилизация тока и напряжение реализованы через один единственный канал обратной связи, но вернемся к нашей микросхеме TNY268 — она выбрана неспроста, во-первых блоки питания на основе данных микросхем имеют минимальную обвязку и самое главное импульсный трансформатор имеет всего две обмотки, сетевая и вторичная.

Дополнительной обмотки мотать в данном случае не нужно, к тому же в самой микросхеме уже есть всё необходимое для работы, включая полноценный шим контроллер, система защиты и даже силовой транзистор это удобно и дешево.

Я сделал несколько источников питания используя микросхемы, как TNY267 так и 268, работают аналогично хорошо.

Вторая часть зарядки состоит из сдвоенного операционного усилителя lm358, источника опорного напряжения tl431 и мелочевки, имеется пара подстроечных резисторов для регулировки тока и напряжения.

Этот узел наиболее важен, поскольку им можно дополнить любой другой блок питания любой мощности и получить регулируемое по току и напряжению зарядное устройство.

Давайте подробно рассмотрим, как работает этот узел… Первый канал операционного усилителя задействован для стабилизации тока, второй для напряжения, в схеме стабилизации тока имеется токовый шунт, в нашем случае представляющий собой низкоомный, 2-ватный резистор R6.

Опорное напряжение 2,5 вольта задается микросхемой tl431, тут она работает чисто как стабилитрон. Резистор R15 задаёт ток стабилизации, в зависимости от запланированного выходного напряжения необходим пересчёт данного резистора таким образом, чтобы ток стабилизации был в районе 5-10 максимум 20 миллиампер — плюс минус.

Опорное напряжение, через резистивный делитель, подается на инверсный вход операционного усилителя, притом важно заметить что один из резисторов делителя — подстрочный, вращая его мы можем изменять опорное напряжение на инверсном входе операционника.

На прямой вход, того же канала операционного усилителя поступает падение напряжения с датчика тока, при подключении нагрузки на выход источника по шунту будет протекать определенный ток, что приведет к образованию падения напряжения на нём — это напряжение поступит на прямой вход операционного усилителя, где оно будет сравнено с опорным напряжением на другом входе, если падение напряжения на шунте большие опорного напряжения, на выходе операционного усилителя получим высокий уровень — засветятся соответствующий светодиод и одновременно светодиод оптопары, которая задействована тут в цепи обратной связи.

Источник