Лучшие литий-ионные аккумуляторы
Статья обновлена: 2020-12-17
Статья обновлена: 22.10.2020
Чтобы определить лучшие литиевые аккумуляторы, нужно сравнить их по основным параметрам: емкости, напряжению, величине разрядных токов, химическому составу, диапазону рабочих температур. Имеют значение и дополнительные критерии выбора: форма, размеры, торговая марка, наличие или отсутствие платы защиты. Подходящие элементы питания выбираются с учетом их рабочих характеристик и назначения.
Форма и размеры
Литий-ионные аккумуляторы производятся в форме цилиндра или призмы в металлическом корпусе, а также в виде пакетов в полимерной оболочке. Форма зависит от метода сворачивания фольги, из которой производятся аккумуляторы. Форма и размеры «банок» имеют значение, если выбирать их под конкретный батарейный отсек. В остальных случаях строгой привязки нет. Например, аккумуляторную батарею с заданными характеристиками можно собрать из цилиндрических ячеек или призматиков – на ваше усмотрение.
Размеры цилиндрических элементов – стандартизованные, самый популярный типоразмер – 18650. Это ячейки диаметром 18 мм и длиной 65 мм. В этом типоразмере выбор элементов питания наиболее разнообразен. Также распространены цилиндрические элементы типоразмера 21700, 26650, 26980, 32650 и др. Призматики и пакеты бывают разных размеров, без строгой привязки к стандартам.
Емкость, напряжение, допустимые токовые нагрузки
Напряжение у всех Li-ion ячеек с одинаковым химическим составом совпадает. У большинства моделей напряжение составляет 3,6 или 3,7 В. К исключительным относятся литий-железо-фосфатные ячейки (3,2 В) и литий-титанатные (2,3 В). С увеличением размеров литиевых аккумуляторов возрастает их емкость. У ячеек форм-фактора 18650 она обычно составляет от 2000 до 3600 мАч.
Но при выборе лучших литиевых аккумуляторов не стоит оценивать их только по емкости. С увеличением этого параметра снижается токоотдача. Например, у моделей типа LiFePO4 удельная емкость ниже, а токоотдача – выше, чем у большинства Li-ion элементов.
Основные отличия в характеристиках представлены в таблице:
Диапазон рабочих напряжений (от разряженного до заряженного состояния)
около 30–110 Вт·ч/кг
Допустимые токи разряда
Оптимально – до 1С;
в постоянном режиме – до 5С;
в импульсном режиме – до 50С.
до 10С, кратковременно – до 30С
Допустимые температуры в процессе работы
Допустимые температуры в ходе зарядки
С защитой и без нее
Аккумуляторы бывают незащищенные и со встроенной защитой. Это специальная плата, контролирующая процесс заряда-разряда. Она оберегает ячейку от коротких замыканий, неправильной полярности, глубокого разряда и чрезмерного заряда. Защищенные «банки» максимально безопасны при использовании в быту.
В отношении незащищенных ячеек перезаряд, глубокий разряд и короткое замыкание недопустимы. Такие факторы в лучшем случае приводят к ухудшению характеристик аккумуляторов, а в худшем – к вздутию, возгоранию или взрыву.
Но это не значит, что защищенные аккумуляторы Li-ion хорошие, а незащищенные – хуже. Главное – выбирать их в зависимости от дальнейшего использования. Незащищенные ячейки в основном используются для сборки аккумуляторных батарей. Краткие рекомендации по использованию ячеек с защитой и без нее приведены в таблице:
Применение в фонарях и других приборах нескольких последовательно установленных аккумуляторов.
Установка в короткий или узкий батарейный отсек, рассчитанный на 1 аккумулятор без защиты. При наличии защиты аккум на 0, 5 мм шире и на 2–3 мм длиннее по сравнению с незащищенным элементом того же типоразмера.
Подзарядка простейшим зарядным устройством, не способным ограничивать уровень заряда.
Использование в мощных LED фонарях и других приборах, потребляющих ток выше 3 А. «Банки» с защитой в таких условиях отключаются при включении из-за токовых перегрузок.
Использование в приборах, не имеющих собственной защиты от критического разряда.
При подзарядке умным зарядным устройством и параллельном расположении ячеек в приборах.
Сравнение Li-ion аккумуляторов по химическому составу
Современные Li-ion аккумуляторы в зависимости от состава катода или анода делятся на несколько типов. Отличия в химическом составе сказываются и на характеристиках элементов. Чаще всего встречаются ячейки следующих типов:
- Литий-кобальтовые (LiCoO2, LCO или ICR в маркировке). Их плюс – высокая емкость, а минус – низкая термическая стабильность и небольшие допустимые нагрузки по току (1С).
- Литий-марганцевые (LiMn2O4, LMO или IMR в маркировке) – высокотоковые. По удельной емкости они немного уступают аналогам, зато имеют высокие разрядные токи – 5–10С. Дополнительные преимущества таких моделей – высокая термическая стабильность и малое внутреннее сопротивление.
- LiNiMnCoO2 (NMC или INR) – имеют низкий уровень самонагрева, сбалансированное соотношение емкости и допустимых нагрузок по току (2С). Считаются хорошим выбором для электротранспорта.
- Литий-железо-фосфатные (LiFePO4, LFP или IFR). При меньших значениях напряжения и емкости выигрывают у конкурентов по остальным параметрам. Выдерживают высокие токовые нагрузки (25–30С и выше), не снижают характеристики на морозе, отличаются долговечностью, термической и химической стабильностью.
- LiNiCoAlO2 (NCA или NCR) – модели с высокой удельной емкостью, мощные и долговечные. Допустимые токовые нагрузки для них – до 1С.
- Литий-титанатные (LTO, Li4Ti5O12) – рекордсмены по сроку службы, скорости зарядки и допустимым токам разряда (до 10С и выше). Но по номинальному напряжению и удельной емкости они уступают конкурентам.
Правила выбора
При выборе подходящих Li-ion аккумуляторов нужно учесть особенности их использования и определить, какие параметры необходимы в конкретном случае. Например, для использования в электронной сигарете или фонарике важно учесть требования к источнику питания, которые приводятся в инструкциях по эксплуатации устройств.
Для использования в фонарях, пауэрбанках, ноутбуках и подобных им устройствах подходят слаботоковые аккумуляторы – с токами разряда до 2С. Другое дело – батареи для портативного электроинструмента, радиоуправляемых моделей, гироскутеров, электровелосипедов и других устройств со значительным потреблением энергии. АКБ для них собирают из высокотоковых аккумуляторов – с разрядными токами до 10С.
Если же аккумуляторы будут использоваться для сборки АКБ с заданными параметрами, то нужно сопоставить характеристики ячеек и будущей батареи. Для получения батареи заданной емкости ячейки соединяются параллельно, а для суммирования напряжения – последовательно. Например, при сборке из ячеек емкостью 3200 мАч и напряжением 3,6 В по схеме 10S13P получится батарея емкостью 9600 мАч и вольтажом 36 В.
Какие литий-ионные аккумуляторы 18650 лучше?
В рейтинге Li-ion аккумуляторов лидирует продукция всемирно известных производителей: Panasonic, Samsung, LG, Sony. Рекордсменами по популярности в 2020 году остаются:
- Panasonic NCR18650B, Япония. При доступной цене эти аккумуляторы имеют емкость 3400 мАч, ресурс около 500 циклов и допустимый ток при разряде 4,78 А (пиковый – 10 А). Используются в любых приборах, которым нужны мощные и компактные источники питания. Из незащищенных «банок» собираются АКБ для квадрокоптеров, радиоуправляемых моделей, электроинструмента и других портативных устройств. Защищенные ячейки отлично подходят для компактных фонариков.
Samsung INR18650-25R, Корея, тип химии NMC. Это высокотоковые ячейки емкостью 2500 мАч, с током отдачи до 25 А, без платы защиты. Они рассчитаны на постоянную работу под нагрузкой до 20 А и выдерживают пиковые нагрузки до 100 А. Подходят для сборки АКБ, использования в электронных сигаретах и других приборах с собственной платой защиты. Ориентировочный ресурс – более 500 циклов.
- LG HG2 18650 – незащищенные ячейки емкостью 3000 мАч. Рассчитаны на токовые нагрузки до 20 А. При более высоких токах разряда сильно нагреваются. Аккумуляторы этой серии отлично зарекомендовали себя в разных сферах – от питания фонариков и электронных сигарет до сборки мощных аккумуляторных батарей. Выдерживают более 500 циклов заряд-разряд.
Sony VTC6 18650 – незащищенные «банки» емкостью 3000 мАч с допустимыми разрядными токами до 30 А. Устойчивы они и к глубокому разряду. В отличие от большинства Li-ion ячеек, у которых нижний порог напряжения составляет 2,5 В, аккумуляторы Sony VTC6 18650 допускают снижение напряжения до 2 В. Максимальный ток заряда у них составляет 5 А, а при зарядке пульсирующим током – 6 А. Купить аккумуляторы этого вида – отличное решение, если вам нужны элементы питания с рекордно высокой токоотдачей, например, для использования в электроинструменте.
Samsung INR18650-30Q, Корея. Эти высокотоковые ячейки без платы защиты имеют емкость 3000 мАч и ток отдачи до 15 А, а при импульсной нагрузке – до 25 А. Используются в устройствах со встроенной платой защиты и для сборки аккумуляторных батарей. В составе АКБ применяются в электроинструменте, бытовых приборах, электронике, персональном электротранспорте. Выдают полную мощность даже при низком остаточном заряде. По составу схожи с аккумуляторами Tesla. Выдерживают не менее 500 циклов заряд-разряд.
Подробнее о свойствах Li-ion аккумуляторов читайте здесь.
Источник
Литий ионные аккумуляторы ток нагрузки
Первые литий-ионные аккумуляторы были довольно непрочными и считались непригодными для высоких нагрузок. Но сегодня ситуация изменилась, и эта электрохимическая система стоит наравне с никелевой и свинцовой. Существует две основные направленности литий-ионных аккумуляторов — оптимизация под энергетические (емкостные) и мощностные требования.
1. Оптимизация под энергетические (емкостные) показатели
Энергетический литий-ионный элемент оптимизирован под максимальную емкость для обеспечения долгой автономной работы. Примером такого элемента является Panasonic NCR18650B (рисунок 1), которая обладает высокой емкостью, но при разрядке значением в 2С и больше имеет существенное проседание характеристик. При пороговом значении напряжения отсечки в 3,0 В на элемент, разрядка силой 2С снизит емкость до 2,3 Ач вместо номинальных 3,2 Ач. Такие элементы рассчитаны, в первую очередь, для портативных компьютеров и других не особо мощных применений.
Рисунок 1: Разрядные характеристики Panasonic NCR18650B. Элемент емкостью 3,200 мАч разряжается силой 0,2С, 0,5С, 1С и 2С. Отмеченная красным кружком область с пороговым напряжением отсечки 3,0 В на линии разряда силой 2С фиксирует момент полного разряда. Понижение температуры окружающей среды также приведет к потерям емкости, при 25°С емкость будет соответствовать номиналу, при 0°С ее значение будет составлять
83 % от номинальной емкости, при -10°С —
Standard Range AGM | Deep Cycle Range AGM | Gellyte Range GEL |
10 — 12 лет / 600 циклов | 10 — 12 лет / 700 циклов | 10 — 12 лет / 750 циклов |
универсальная серия AGM | для глубоких разрядов AGM | универсальная серия GEL |
2. Оптимизация под мощностные показатели
Элемент Panasonic UR18650RX имеет небольшую емкость, но превосходные нагрузочные характеристики. Разряд силой тока 10 А (5С) приводит к минимально возможным потерям емкости с напряжением отсечки 3,0 В. Такие элементы предназначены для устройств с высокими токами нагрузки, например, для электроинструмента.
Рисунок 2: Разрядные характеристики Panasonic UR18650RX. Показан разряд этого 1950 мАч элемента С-рейтингом 0,2С, 0,5С, 1С, 2С и фиксированной силой тока 10 А. Разрядка всеми вышеперечисленными значениями обеспечивает емкость на уровне 2000 мАч при пороговом напряжении отсечки 3,0 В. Данные элементы обладают умеренной емкостью, но в состоянии удовлетворить высокий ток нагрузки. При понижении температуры окружающей среды реальная емкость понизится до: при 25°С — 100% от номинала, 0°С —
Оптимизированный под показатели мощности элемент способен обеспечить непрерывный разряд силой 10С. Это означает, что элемент типоразмера 18650 емкостью 2000 мАч может обеспечить непрерывное питание нагрузки силой тока 20 А (30 А – в случае, если это элемент Li-фосфатной технологии). Такая превосходная производительность достигается частично за счет снижения внутреннего сопротивления, а также за счет оптимизации площади поверхности активного вещества. Низкое сопротивление обеспечивает высокое значение электрического тока с минимальным повышением температуры. Эксплуатация при максимально допустимом разрядном токе нагревает элемент примерно до 50°С, тогда как максимально допустимая температура составляет 60°С.
Marin GEL Range | Deep Cycle GEL Range | Solar GEL Range |
10 — 12 лет / 800 циклов | 10 — 12 лет / 800 циклов | 10 — 12 лет / 800 циклов |
для электромоторов лодок и катеров | для глубоких циклических разрядов | для солнечных электростанций |
Для удовлетворения нагрузочным характеристикам у производителей аккумуляторов есть два пути: использование оптимизированных под мощность элементов или увеличение размеров аккумулятора из элементов, “заточенных” под емкость. Подобный метод из увеличения количества элементов используется в аккумуляторных системах электромобиля Tesla, и хотя такая система обеспечит отличный показатель автономного времени работы, ее вес и стоимость будут значительно увеличены.
3. Сигнатура разрядки
Одним из уникальных свойств аккумуляторов на основе лития и никеля является способность обеспечения непрерывной высокой мощности, вплоть до полного исчерпания аккумулятора. Это свойство становится возможным благодаря быстрому электрохимическому восстановлению. Свинцово-кислотный аккумулятор является “медленным”, его можно сравнить с фломастером, которому для восстановления способностей после расхода краски необходимо некоторое время. И в то время как восстановление характеристик относительно быстрое при разрядке (например, при запуске двигателя стартерным аккумулятором), то вся медлительность химических реакций становится очевидной при зарядке, которая длится 14-16 часов. С увеличением возраста свинцово-кислотного аккумулятора скорость восстановления его характеристик становится только хуже.
Аккумулятор может разряжаться постоянной нагрузкой, скажем в 0,2С, как, например, происходит в фонарике, но многие другие устройства требуют кратковременных нагрузок, в два-три раза превышающих допустимый разрядный С-рейтинг. Примером такого импульсного потребления электричества может служить технология GSM (Global System for Mobile Communications), используемая в мобильных телефонах. GSM требует пикового значения силы тока в 2 А каждые 577 микросекунды. Такая специфичность работы выдвигает особые требования к небольшим аккумуляторам, к тому же, при высокой частоте импульсного энергопотребления, электрические батареи начинают вести себя как большие конденсаторы и их характеристики, соответственно, меняются.
Рисунок 3: Разрядные импульсы GSM-приемника мобильного телефона. Импульсы частотой 577 микросекунд зависят от расстояния до ближайшей вышки и могут достигать 2 А.
Phoenix Charger | Skylla-i | Skylla-TG |
12/24В, 16-200А | 24В, 80-500А | 24/48В, 30-500А |
Мощные профессиональные зарядные устройства для яхт, катеров и другого вида транспорта. Предлагаются однофазные и трехфазные зарядные устройства высокой мощности. Многостадийный адаптивный заряд с возможностью ручного управления. |
С точки зрения долговечности, аккумуляторной батарее наиболее предпочтителен постоянный разрядный ток умеренной силы в сравнении с импульсной или одномоментной высокой нагрузкой. Рисунок 4 демонстрирует уменьшающуюся емкость NiMH аккумулятора при различных условиях разрядки — от “мягкого” постоянным током 0,2С до импульсного режима. Стоит отметить, что большинство электрохимических систем, в том числе и литий-ионная, будут демонстрировать похожее поведение с нагрузочными характеристиками, указанными на рисунке 4.
Рисунок 4: Жизненный цикл никель-металл-гидридного аккумулятора при различных условиях нагрузки. NiMH лучше работает с постоянным разрядным током и аналоговыми устройствами, подключение цифровых устройств снижает срок службы. Li-ion ведет себя аналогичным образом.
На рисунке 5 анализируется количество полных циклов оптимизированного под емкостные показатели литий-ионного элемента при разрядке различными значениями С-рейтинга. При значении 2С аккумулятор подвергается значительному стрессу, ограничивая период снижения емкости до половины номинального значения всего лишь 450 циклами.
Рисунок 5: Жизненный цикл оптимизированного под емкостные показатели литий-ионного элемента при различных условиях нагрузки. При высоких нагрузках износ абсолютно всех аккумуляторных батарей увеличивается. Но элементы, оптимизированные под мощностные показатели, являются более выносливыми и надежными в случае высоких нагрузок.
OPzS | NI-CD | OPzV |
20 лет / 1500 циклов | 25 лет / 2000 циклов | 20 лет / 1500 циклов |
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т.д. |
4. Рекомендации относительно разрядных процессов аккумуляторных батарей
Тепло увеличит производительность аккумулятора, но каждые 10°С выше 25-30°С будут сокращать срок его службы вдвое. Рекомендуется держать аккумулятор в прохладном месте.
Не допускайте чрезмерной разрядки.
При высоких нагрузках и повторяющихся глубоких разрядах использование большого аккумулятора минимизирует наносимый стресс.
Разрядка умеренным постоянным током лучше для аккумулятора в сравнении с импульсными и высокими кратковременными нагрузками.
Аккумулятор показывает свойства конденсатора при разрядке высокочастотным током. Это позволяет использовать более высокие пиковые токи в сравнении с разрядкой постоянным током.
Аккумуляторы на основе никеля и лития имеют высокое химическое быстродействие; свинцово-кислотные же являются медленными, и им необходимо несколько секунд для восстановления характеристик между тяжелыми разрядами.
Приближение к граничным уровням заряда и разряда несет деградационный характер для всех электрохимических систем.
Источник
Литий-ионные аккумуляторы
Характеристики, типы и устройство Li-ion аккумуляторов
На сегодняшний день литий-ионные аккумуляторы остаются самыми востребованными для комплектации мобильных устройств. Без мощного аккумулятора мобильный телефон, ноутбук, фотоаппарат и даже карманный фонарик быстро потеряют автономность.
Первый гальванический элемент «вольтов столб», появившийся благодаря Алессандро Вольта 20 марта 1800 года, был высотой в полметра и мало чем походил на современные аккумуляторы. Многие годы с тех времен по этому принципу разрабатывались одноразовые батарейки. Только в 1980 году благодаря Джону Гуденафу и его коллегам появились перезаряжаемые литий-ионные батареи. Почти 40 лет существования этого типа АКБ, и они стали прочным фундаментом мобильности и автономности. Сложно представить, что бы мы делали без таких «палочек-выручалочек». Без розеток и провода они дают нам возможность пользоваться многими гаджетами где угодно. Аккумуляторам Li-ion типа нашли применение в ноутбуках, карманных компьютерах, мобильных телефонах, видеокамерах, цифровых фотокамерах.
От первой гальванической батарейки в современном аккумуляторе Li-ion типа не сохранилось ни металлических дисков, ни войлочных пластинок, которые пропитывались раствором кислоты. Остался только принцип работы: АКБ содержат в себе химические реагенты, в которые входят два металла. Между электродами анодом (+) и катодом (-) пространство заполнено электролитической жидкостью. Эта жидкость является проводником и участником электролитической диссоциации. Электрическая энергия появляется за счет движения заряженных частиц от анода к катоду, в процессе взаимодействия металлов.
Li-ion аккумуляторы бывают цилиндрической формы и призматической. В цилиндрическом аккумуляторе используют электроды, завернув их в рулон. Они изолированы сепаратором и заключены в металлический корпус. Корпус связан с катодом, который не соприкасается с анодом, иначе произойдет самопроизвольный разряд. В призматическом варианте аккумуляторов конструкция имеет вид сложенных друг на друга пластин-пленок, между которыми совсем тонкий слой сепаратора.
Внутри на аноде и катоде происходят реакции.
При заряде на аноде:
- LiCoO2→Li1-xCoO2 + xLi + + xe —
При заряде на катоде:
- С + xLi + + xe — →CLix , где х – степень интеркаляции.
При разряде процесс идет в обратном направлении. Из-за такого эффекта качелей аккумуляторы литий-ионного типа называют «кресла-качалки».
К показателям, которые характеризуют литий-ионные батареи, относятся следующие технические параметры: напряжение, ёмкость, внутреннее сопротивление, диапазон рабочих температур, время быстрого заряда и ток нагрузки относительно ёмкости. Эти характеристики зависят от состава компонентов и не фиксированы. Пределы данных характеристик весьма условны.
Напряжение (В) | номинальное | 3,6 — 3.85 |
максимальное | 4,2 или 4,4 | |
минимальное | 2,75 | |
Удельная энергоёмкость (Вт·ч/кг) | 110-243 | |
Время быстрого заряда (мин) | 30-60 | |
Внутреннее сопротивление (мОм) | 30-50 | |
Ток нагрузки (С) | номинальный | до 1 С |
максимальный | до 2 С | |
безопасный | до 3 С (1 мин) | |
Рабочая температура ( о С) | -20 — +60 |
Взрывоопасность
Защита аккумулятора
Требования к режимам заряда/разряда
- Критически высокая температура может привести к вздутию аккумулятора. Рабочая температура +20 — +40 о С. Не стоит устраивать солнечные ванны вашему гаджету и тем более париться с ним в бане, эти действия могут вызвать перегрев аккумулятора.
- После полной зарядки гаджет рекомендуется отключать от зарядного устройства.
Если аккумулятор полностью заряжен, то без подзарядки он в зависимости от емкости может сохранять свой заряд до 12 месяце. Это определяется малым значением саморазряда. Однако хранить полностью заряженными литиевые аккумуляторы не рекомендуется. Хранить купленные аккумуляторы надо заряженными менее чем на половину и не дольше 6 месяцев.
Старение и износ
Часто задаваемые вопросы:
Можно ли соединять аккумуляторы последовательно?
- Да, можно. При последовательном подключении будет суммироваться напряжение.
- Нельзя соединять последовательно аккумуляторы с разной ёмкостью. При заряде схемы из последовательно соединенных аккумуляторов с разными ёмкостями, случится перезаряд того, который с меньшей. Это приведет к его перезаряду и перегреву.
- Аккумулятор с меньшей ёмкостью в процессе эксплуатации разрядится первым, возникнет эффект «хромой лошади», хотя цепь будет использоваться дальше, но это приведет к уменьшению ресурса аккумулятора в целом.
Как правильно параллельно соединить аккумуляторы?
- При параллельном соединении суммируется ёмкость.
- Соединяя аккумуляторы параллельно, следует убедиться в том, что максимальное напряжение на них одинаковое. Иначе может произойти перезаряд того аккумулятора, который имеет меньшее напряжение. Это опасно!
Из-за чего теряется ёмкость у аккумулятора, который работает?
- Ресурс аккумулятора уменьшается по мере исчерпания жизненых циклов.
Для чего защита в аккумуляторе?
- Для экстренного отключения аккумулятора при возникновении нештатных ситуаций.
Нужно ли Li-ion аккумулятор полностью разряжать перед процедурой заряда?
- Li-ion и li-pol аккумуляторы не имеют эффекта памяти, поэтому полностью разряжать их не нужно.
- Их можно заряжать и разряжать в любой момент.
Почему взрываются аккумуляторы?
- Допустимая температура превышена и электролит чрезмерно нагревается.
- При коротком замыкании внутри ячейки АКБ.
- Причин много: производственный брак, механические повреждения, нарушения рекомендаций по эксплуатации.
Как работает аккумулятор?
- АКБ содержат в себе химические реагенты, в которые входят два металла.
- Между электродами анодом (+) и катодом (-) пространство заполнено электролитической жидкостью.
- Жидкость является проводником и участником электролитической диссоциации.
- Электрическая энергия запасается за счет переноса заряженных частиц от анода к катоду.
Источник
Литий-ионный аккумулятор Li-ion
Содержание
- Принцип работы литий-ионного аккумулятора
- Строение литий-ионного аккумулятора
- Процесс заряда и разряда литий-ионного аккумулятора
- Слой разделителя в литий-ионном аккумуляторе
- Из чего делают литий-ионный аккумулятор
- Литий-ионные аккумуляторы в автомобиле Tesla
- Защитный SEI-слой
- Заключение
В настоящее время литий-ионный аккумулятор используется абсолютно во всей домашней и портативной электронике.
Можно без преувеличения сказать: без портативных источников питания, мир современной техники был бы намного беднее. Все разнообразие карманных электронных гаджетов, приборов, смартфонов, гироскутеров, электромобилей наконец, стало возможным благодаря литий-ионным аккумуляторам.
Принцип работы литий-ионного аккумулятора
Давайте рассмотрим литий-ионный аккумулятор. Как видите, он состоит из нескольких слоев с различным химическим составом.
В основе работы литий-ионного аккумулятора лежит, так называемый, электрохимический потенциал. Суть его в том, что металлы стремятся «отдавать» свои электроны. Как видно на рисунке ниже, наибольшая способность к отдаче электронов – у лития, а наименьшая – у фтора. Если такой атом отдает свой электрон, то он становится положительным ионом.
Первая в истории электрическая батарейка, созданная более 200 лет назад Алессандро Вольтой, работала как раз на принципе электрохимического потенциала. Вольта взял два металла с разными электрохимическими потенциалами (цинк и серебро) и получил электрический ток. В честь его открытия такую “батарейку” назвали Вольтовым столбом.
В 1991 г. Sony выпустила первый коммерчески успешный литий-ионный аккумулятор.
В литий-ионных элементах используется металл с наибольшей способностью отдавать электроны – литий. У лития всего один электрон на внешней орбите, и он постоянно стремится его «потерять».
Из-за этого литий считается чрезвычайно химически активным металлом. Он реагирует даже с водой и воздухом. Но активен только чистый литий, а вот его оксид, напротив, очень стабилен.
Это свойство лития как раз используется при создании литий-ионных аккумуляторов.
Допустим, мы каким-то образом отделили атом лития от оксида. Этот атом будет крайне нестабилен и сразу превратится в положительный ион, потеряв электрон.
Однако в составе оксида литий гораздо более стабилен, чем одинокий атом лития. Если мы сможем каким-то образом обеспечить движение по двум отдельным путям для электрона и для положительного иона лития, то ион самостоятельно достигнет оксида и встанет там на свое место. При этом мы получим электрический ток благодаря движению электрона.
Итак, можно получить электрический ток из оксида лития, если сначала отделить атомы лития от оксида и затем направить потерянные ими электроны по внешней цепи. Рассмотрим, как эти две задачи решаются в литий-ионных элементах.
Строение литий-ионного аккумулятора
Помимо оксида лития, элементы содержат также электролит и графит. В графите связь между слоями гораздо слабее, чем между атомами внутри слоев, поэтому графит имеет слоистую структуру.
Электролит, помещенный между оксидом лития и графитом, служит барьером, пропускающим сквозь себя только ионы лития. Электроны же не могут проникать сквозь электролит и отскакивают от него, как теннисный мячик об стенку. В качестве электролита используется органическая соль лития, которая наносится на слой разделителя (о разделителе ниже в статье).
Процесс заряда и разряда литий-ионного аккумулятора
Итак, у нас есть разряженный аккумулятор
Давайте же его зарядим. Для этого нам нужен какой-либо источник питания. Что произойдет в этот момент на самом литий-ионном аккумуляторе? Положительный полюс начнет притягивать электроны, «вытаскивая» их из оксида лития.
Поскольку электроны не могут проникать через электролит, то они движутся по внешней цепи через источник питания.
и в конце концов достигают графита
где очень удобно располагаются в слоях графита.
В этот же самый момент положительные ионы лития притягиваются отрицательным полюсом, проходя сквозь электролит и также попадают в графит, размещаясь между его слоями.
Когда все ионы лития достигнут графита и будут «захвачены» его слоями, батарея будет полностью заряжена.
Такое состояние батареи неустойчивое. Это можно представить как шар, который находится на самой верхушке холма и в любой момент может скатиться.
Вот мы и достигли первой цели: электроны и ионы лития отделены от оксида. Теперь надо как-то сделать так, чтобы электроны и ионы двигались разными путями. Как только мы подключим какую-либо нагрузку к нашему заряженному литий-ионному аккумулятору, то начнется обратный процесс. В этом случае ионы лития через электролит пожелают вернуться в свое изначальное состояние.
Поэтому они начнут двигаться обратно сквозь электролит, а электроны побегут через внешнюю цепь, то есть через нагрузку.
Так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц, то в цепи лампочки накаливания возникнет электрический ток, который заставит эту самую лампочку светиться.
Как только все электроны “убегут” из графита, то батарея полностью разрядится. Чтобы ее снова зарядить, достаточно поставить аккумулятор “на зарядку”.
При этом графит сам по себе не участвует в химических реакциях – он лишь служит «складом» для ионов и электронов лития.
Слой разделителя в литий-ионном аккумуляторе
Если внутренняя температура элемента по какой-то причине начнет расти, жидкий электролит высохнет, и произойдет короткое замыкание между анодом и катодом. В результате элемент может загореться или даже взорваться.
Чтобы этого не произошло, между электродами помещается дополнительный изолирующий слой, называемый разделителем. Разделитель проницаем для ионов лития благодаря наличию микропор. Электроны он не пропускает.
Из чего делают литий-ионный аккумулятор
В реальных литий-ионных аккумуляторах графит и оксид лития наносятся в виде покрытия на медную и алюминиевую фольгу. Ниже на рисунке мы видим, что на тонком листе меди у нас располагается графит, а на тонком листе алюминия – оксид лития.
Минус аккумулятора снимается с медной фольги, а плюс – с алюминиевой.
ну а между ними располагается еще разделитель, пропитанный электролитом
Для того, чтобы уменьшить объем, все эти три слоя сворачивают в “рулончик”.
образуя при этом всем нам знакомую литий-ионную цилиндрическую батарейку
Литий-ионные аккумуляторы в автомобиле Tesla
Вообразите мир, в котором все машины оснащены электродвигателями, а не двигателями внутреннего сгорания. Электромоторы превосходят ДВС практически по всем техническим показателям, да к тому же намного дешевле и надежнее. У ДВС есть существенный недостаток: он выдает достаточный крутящий момент лишь в узком диапазоне скоростей. В общем, электродвигатель – однозначно лучший выбор для автомобиля. Об этом мы писали еще в статье про автомобиль Тесла.
Но есть одно «узкое место», из-за которого электрическая революция в автопроме постоянно откладывается – это источники питания. Долгое время громоздкие, тяжелые, недолговечные и ненадежные аккумуляторы электромобилей никак не могли составить конкуренцию полному баку бензина. Но все изменилось, когда на рынок вышел производитель электромобилей Тесла.
Именно литий-ионные аккумуляторы использует компания Тесла для своих электрокаров.
Стандартный элемент выдает напряжение 3,7 – 4,2 В. Множество таких элементов, соединенных последовательно и параллельно, образуют модуль.
Литий-ионные элементы при работе выделяют много тепла. При этом высокая температура снижает срок службы и эффективность самих элементов. Для контроля температуры, а также их уровня заряда, защиты от перезаряда и общего состояния элементов питания, служит специальная система управления батареями (Battery management system, сокращенно BMS). В батареях Tesla используется спиртовая система охлаждения. BMS регулирует скорость движения спирта в системе, поддерживая оптимальную температуру батарей.
Еще одна важнейшая функция BMS – защита от перезаряда. Допустим, есть три элемента с разной емкостью. Во время зарядки элемент с большей емкостью зарядится сильнее двух остальных. Чтобы этого не допустить, BMS использует так называемое выравнивание заряда элементов (cell balancing). При этом все элементы заряжаются и разряжаются равномерно и защищены от чрезмерного или недостаточного заряда.
И в этом преимущество Tesla над технологией аккумуляторов Nissan. У Nissan Leaf серьезная проблема с охлаждением аккумулятора из-за большого размера элементов и отсутствия системы активного охлаждения.
У конструкции с множеством маленьких цилиндрических элементов есть и еще одно преимущество: при большом расходе энергии нагрузка распределяется равномерно между всеми элементами. Если бы вместо множества маленьких элементов был один огромный элемент, из-за постоянных нагрузок он очень быстро бы пришел в негодность. Tesla сделала ставку на маленькие цилиндрические элементы, технология производства которых уже хорошо отработана. Более подробно про батарейный модуль Тесла читайте в этой статье.
Защитный SEI-слой
Во время первой зарядки внутри литий-ионного элемента происходит одно замечательное явление, спасающее элемент от скорой «смерти». Неожиданной проблемой оказались электроны, находящиеся в слое графита. При контакте с электролитом они начинают разрушать его. Но одно случайное открытие позволило не допустить контакт электронов с электролитом. При первой зарядке элемента, как мы уже говорили, ионы лития движутся сквозь электролит. В процессе этого движения молекулы растворенного в электролите вещества покрывают ионы. Достигнув графитового слоя, ионы лития вместе с молекулами раствора электролита реагируют с графитом, образуя так называемая промежуточную фаза твердого электролита (solid electrolyte interphase, или SEI-слой). Этот слой предотвращает контакт электронов с электролитом, предохраняя электролит от разрушения.
Вот так проблема случайным образом решилась сама собой. Хотя эффект SEI был открыт случайно, в последующие два десятилетия ученые целенаправленно улучшали процесс, подбирая наиболее эффективную толщину и химический состав.
Заключение
Сегодня уже удивительно, что еще два десятка лет назад в электронных гаджетах не применялись литий-ионные аккумуляторы. Индустрия литий-ионных аккумуляторов развивается с фантастической скоростью: ожидается, что в ближайшие несколько лет их рынок достигнет 90 млрд. долларов. Современные литий-ионные батареи способны выдержать примерно 3000 циклов зарядки-разрядки – это уже приличный показатель, но еще есть, куда расти. Лучшие умы во всем мире трудятся над тем, чтобы повысить их долговечность до 10 000 циклов. В этом случае аккумулятор электромобиля не придется заменять целых 25 лет. Миллионы долларов вкладываются в исследования, которые позволят заменить графит на кремний в качестве «хранилища» в литий-ионных элементах. Если это удастся сделать, их емкость возрастет более чем в пять раз! В настоящее время мир переходит уже на литий-полимерные аккумуляторы, которые показали себя чуточку лучше, чем литий-ионные.
Источник
Как устроен Li-Ion аккумулятор?
Автономную работу всевозможных устройств,отмобильных гаджетов до персонального электротранспорта, обеспечивают аккумуляторы. С учетом необходимых значений емкости и напряжения, они объединяются в аккумуляторные батареи. Ключевые характеристики АКБ – емкость, напряжение, масса, время восполнения заряда, допустимый температурный режим – зависят от типа используемой химии.
Для автономного питания современной техники успешно используются литий-ионные аккумуляторы. Они имеют большой циклический ресурс, малый саморазряд, широкий температурный диапазон и солидную удельную емкость. Катод у таких элементов выполнен из производных лития, а заряд переносят ионы Li. Далее мы подробнее рассмотрим устройство Li-ion аккумуляторов и принцип их работы.
Как устроена литий-ионная батарея?
В основе конструкции литий-ионного аккумулятора– 2 составляющие: анод, выполненный из пористого углерода на фольге из меди, и катод – из оксида лития на фольге из алюминия. Их разделяет пористый сепаратор из полипропилена, обильно пропитанный электролитом, который выполняет функции проводника. Система находится в герметичном корпусе. Электроды подключены к токосъемникам. Некоторые аккумуляторы дополнительно имеют клапан-предохранитель для сброса внутреннего давления.
Пластины из меди и алюминия, смазанные электролитом и разделенные пористой прослойкой, обычно сворачиваются в рулон. В итоге получается элемент цилиндрической формы. При другом способе укладки пластин получаются изделия в форме призм и пакетов. Состав катода бывает разным: LiMn2O4, LiFePO4, LiCoO2,LiMnO2, LiMnRON, LiC6, LiNiO2и т.д.
Типы Li-ionаккумуляторов
В зависимости от используемого материала катода литиевые элементы бывают:
- Литий-марганцевые (LiMn2O4, LNO). Имеют меньшее внутреннее сопротивление, высокую мощность и умеренную емкость – 100–150 Вт·ч/кг. Стандартные токи заряда и разряда – до 1С, но есть модели с С-рейтингом зарядки до 3С и С-рейтингом разряда до 10С, а в импульсном режиме – до 50С. Ресурс – около 500 циклов. Применяются такие накопители в электроинструменте, силовых агрегатах, медицинском оборудовании.
- Литий-кобальтовые (LiCoO2, LCO). Имеют высокую энергоемкость (150–200 Вт·ч/кг), но уступают аналогам по термической стабильности и сроку службы (500–1000 циклов). Токи заряда и разряда для таких элементов не должны превышать 1С. Накопители энергии на основе кобальта встречаются все реже, но еще используются в мобильных телефонах, цифровых камерах, ноутбуках.
- Литий-никель-марганец-кобальт-оксидные (NMC, NCM). Обеспечивают высокую мощность и емкость – 150–220 Вт·ч/кг, выдерживают 1000–2000 циклов. Стандартные токи заряда и разряда – 1С. Используются в медицинском и промышленном оборудовании, электровелосипедах и других видах электротранспорта.
- Литий-никель-кобальт-алюминий-оксидные (NCA). Отличаются высокой удельной энергоемкостью – 200–260 Вт·ч/кг. Имеют ресурс около 500 циклов, зарядные токи 0,7С и разрядные 1С. Обеспечивают автономное питание промышленного и медицинского оборудования, электрических силовых агрегатов и других устройств, требующих высокой емкости.
- Литий-железо-фосфатные (LFP, LiFePO4). Отличаются большим ресурсом (более 2000 циклов), термической и химической стабильностью, высокой безопасностью эксплуатации и малым внутренним сопротивлением. Их удельная энергоемкость составляет 90–120 Вт·ч/кг, ток зарядки – 1С, ток разрядки – до 25С. Используются такие элементы питания в устройствах, для которых важна выносливость аккумов, способность работать на морозе и выдерживать высокие токи нагрузки.
- Литий-титанатные (LiTi). Отличаются низким номинальным напряжением (2,4 В) и удельной энергоемкостью 70–80 Вт·ч/кг, но быстро заряжаются, имеют широкий температурный диапазон и ресурс 3000–7000 циклов. Номинальные токи зарядки 1С, максимум – 5С. Допустимые разрядные токи – 10С, а при импульсной подзарядке – 30С. Литий-титанатные элементы считаются самыми безопасными. Используются они в уличном освещении, ИБП, электротранспорте.
Как работает литиевый аккумулятор?
Принцип работы Li-ion аккумуляторов идентичен для элементов всех типов, независимо от материала катода.Когда на электроды подается напряжение – «плюс» на оксид лития и «минус» на графит – положительно заряженные ионы лития отцепляются от молекул оксида и переходят на углеродную пластинку. В результате протекает окислительная реакция, и аккумулятор заряжается.
При работе литиевого аккумулятора под нагрузкой протекает обратный процесс. Ионы Li + возвращаются на пластинку из оксида лития, в свое стандартное состояние. Графитовая пластинка на фольге из меди становится «минусом», а оксид лития на фольге из алюминия – «плюсом».
Особенности зарядкиLi-ionэлементов
Литий-ионные элементы питания чувствительны к перезаряду. На поверхности анода при чрезмерном заряде осаждается металлический литий. Он выглядит как мелкий мшистый осадок и способен вступать в реакцию с электролитом. На катоде при перезаряде активно выделяется кислород. Внешне это может проявляться в виде интенсивного нагрева, роста давления и разгерметизации элемента.
Заряжаются Li-ionаккумуляторы в 2 этапа:
- При стабильном значении тока 0,2С–1С до рекомендованного производителем напряжения, обычно – 4,1–4,2 В. Длится эта стадия около 40 минут.
- При неизменном напряжении. Процесс зарядки завершается, когда значение зарядного тока уменьшается до величины, составляющей 3% от начального значения.
Быстрее происходит зарядка в импульсном режиме.Но для продления срока службы литиевых элементов их рекомендуется заряжать током, номинал которого составляет 50% от значения емкости, т.е. 0,5С.
Защита литиевых аккумуляторов
Элементы питания на основе лития защищены от коротких замыканийвнутри системы, например, с помощью 2-слойного сепаратора. Один из его слоев выполняется не из полипропилена, а из аналога полиэтилена. При риске короткого замыкания, к примеру, если дендриты лития прорастают к катоду, защитный слой локально нагревается, частично плавится, становится непроницаемым и блокирует последующее прорастание дендритов.
Для защиты от избыточного заряда и глубокого разряда накопители энергии снабжаются специальными ограничителями – платами защиты по току и напряжению. Они не допускают выхода напряжения за границы рекомендованного диапазона и в критических ситуациях автоматически отключают элемент от питания или нагрузки.
Поэтому для безопасной работы элементов и аккумуляторных батарей важно использовать BMSплаты. В противном случае высок риск повреждения аккумуляторов и их преждевременного выхода из строя. Такой контроллер зарядно-разрядного процесса может устанавливаться и на отдельные аккумуляторы, и на собранную из них батарею.
Производство литиевых элементов питания
Сырье для основных элементов в схеме Li-ion аккумуляторов – катода и анода – имеет вид мелкофракционного черного порошка. Чем мельче частицы, тем больше получается эффективная площадь электродов. Оптимальная форма частиц – сферическая, с гладкими краями, т.к. неровности чувствительны к токовым нагрузкам.
Производственный процесс состоит из следующих этапов:
- Порошковидные материалы наносятся в виде суспензии на фольгу. Аноды и катоды обычно производятся в различных цехах, чтобы обеспечить максимальную чистоту материалов. Металлическая фольга играет роль токоприемника.
- Фольга с нанесенными материалами сушится, разделяется на полоски и складывается в несколько слоев. Процесс сворачивания строго контролируется, т.к. любые дефекты способны привести к коротким замыканиям внутри системы.
- Между пластинами анода и катода зажимается сепаратор, обработанный электролитом.
- Пластинки сворачиваются рулоном или по другой схеме и помещаются в корпус.
Готовые изделия проходят тестирование – контролируемый цикл заряда-разряда. Подзарядку начинают с минимального напряжения и с постепенным его повышением.Протестированные изделия заряжаются до оптимального уровня, чтобы исключить риск значительного падения напряжения из-за саморазряда, и поставляются в продажу.
Предыдущая статья нашего блога посвящена сигнализации для электровелосипедов.
Источник